
EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2003 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No. CWA 14050-27:2003 D/E/F

CEN

WORKSHOP

AGREEMENT

CWA 14050-27

October 2003

ICS 35.200; 35.240.15; 35.240.40

English version

Extensions for Financial Services (XFS) interface specification -
Release 3.02 - Part 27: PIN Keypad Device Class Interface - Migration

from Version 3.00 to Version 3.02 - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Management Centre can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United
Kingdom.

CWA 14050-27:2003 (E)

2

Table of Contents

Foreword.. 4

1. General... 5

2. Backwards Compatibility... 6

2.1. GIE_CB ... 6

2.2. Remote Key Loading.. 6

2.3. OPT.. 6

2.4. MAA MAC.. 6

2.5. Multiple-Part Key Loading ... 6

3. New Chapters... 7

3.1. Appendix ... 7

3.2. Remote Key Loading Using Signatures .. 8
3.2.1 RSA Data Authentification & Digital Signatures ... 8
3.2.2 RSA Secure Key Exchange using Digital Signatures ... 9
3.2.3 Initialization Phase – Signature Issuer & ATM PIN... 11
3.2.4 Initialization Phase – Signature Issuer & Host ... 11
3.2.5 Key Exchange – Host & ATM PIN .. 12
3.2.6 Key Exchange (with random number) – Host & ATM PIN ... 13
3.2.7 Default Keys and Security Item loaded during manufacture .. 14

3.3. Remote Key Loading Using Certificates... 15
3.3.1 Certificate Exchange and Authentication.. 15
3.3.2 Remote Key Exchange.. 16
3.3.3 Replace Certificate ... 18
3.3.4 Primary and Secondary Certificates.. 18

3.4. German ZKA GeldKarte ... 19
3.4.1 Protocol WFS_PIN_PROTPBM .. 19
3.4.2 Protocol WFS_PIN_PROTHSMLDI ... 19

3.5. EMV Support.. 20
3.5.1 Keys loading... 20
3.5.2 Certification Authority keys.. 20
3.5.3 Chip card keys .. 21
3.5.4 PIN block management... 21
3.5.5 SHA-1 Digest ... 21

3.6. French Cartes Bancaires.. 22
3.6.1 Data Structure for WFS_CMD_PIN_ENC_IO... 22
3.6.2 Command Sequence ... 24

4. Changes to existing Chapters.. 25

4.1. References ... 25

4.2. Protocol WFS_PIN_PROTISOLZ.. 26

4.3. Protocol WFS_PIN_PROTISOPS... 26

4.4. Protocol WFS_PIN_PROTCHIPZKA.. 26

5. New Info Commands... 27

6. Changes to existing Info Commands.. 27

6.1. WFS_INF_PIN_STATUS .. 27

6.2. WFS_INF_PIN_CAPABILITIES ... 29

6.3. WFS_INF_PIN_KEY_DETAIL.. 34

CWA 14050-27:2003 (E)

3

6.4. WFS_INF_PIN_KEY_DETAIL_EX .. 35

7. New Execute Commands... 37

7.1. WFS_CMD_PIN_HSM_INIT ... 37

7.2. Common commands for Remote Key Loading Schemes... 38
7.2.1 WFS_CMD_PIN_START_KEY_EXCHANGE.. 38

7.3. Remote Key Loading Using Signatures .. 39
7.3.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY ... 39
7.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM ... 41
7.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY ... 42
7.3.4 WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR... 45
7.3.5 WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM.. 47

7.4. Remote Key Loading with Certificates... 48
7.4.1 WFS_CMD_PIN_LOAD_CERTIFICATE.. 49
7.4.2 WFS_CMD_PIN_GET_CERTIFICATE ... 50
7.4.3 WFS_CMD_PIN_REPLACE_CERTIFICATE ... 51
7.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY... 52

7.5. EMV... 53
7.5.1 WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY .. 53
7.5.2 WFS_CMD_PIN_DIGEST .. 56

8. Changes to existing Execute Commands.. 57

8.1. WFS_CMD_PIN_CRYPT ... 57

8.2. WFS_CMD_PIN_IMPORT_KEY.. 59

8.3. WFS_CMD_PIN_GET_PINBLOCK ... 61

8.4. WFS_CMD_PIN_INITIALIZATION .. 62

8.5. WFS_CMD_PIN_HSM_SET_TDATA... 63

8.6. WFS_CMD_PIN_SECURE_MSG_SEND ... 64

8.7. WFS_CMD_PIN_SECURE_MSG_RECEIVE.. 65

8.8. WFS_CMD_PIN_GET_JOURNAL ... 66

8.9. WFS_CMD_PIN_IMPORT_KEY_EX... 67

8.10. WFS_CMD_PIN_ENC_IO.. 69

9. New Events... 70

9.1. WFS_SRVE_PIN_CERTIFICATE_CHANGE ... 70

9.2. WFS_SRVE_PIN_HSM_TDATA_CHANGED... 71

10. Changes to existing Events.. 71

11. Changes to C - Header File... 72

CWA 14050-27:2003 (E)

4

 Foreword

This CWA is revision 3.02 of the XFS interface specification.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2003-05-21. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.02.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.00
(see CWA 13449) to Version 3.00 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 18: Identification Card Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version
3.00 (see CWA 14050-4:2000; superseded) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00
(this CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (see
CWA 14050-6:2000; superseded) - Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version
3.00 (this CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.00 (see CWA 13449) to
Version 3.01 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.00 (see CWA 13449) to Version 3.00 (this
CWA) - Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

CWA 14050-27:2003 (E)

5

Part 26: Identification Card Device Class Interface - Migration from Version 3.00 (see CWA 14050-4:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

Part 27: PIN Keypad Device Class Interface - Migration from Version 3.00 (see CWA 14050-6:2000; superseded)
to Version 3.02 (this CWA) - Programmer's Reference

Part 28: Cash In Module Device Class Interface - Migration from Version 3.00 (see CWA 14050-15:2000;
superseded) to Version 3.02 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

1. General

PIN has been enhanced to support EMV, GIE-CB, Remote Key Loading (Signature and Certificate), OPT,
MAA MAC, and Multiple-Part Key Loading.

Clarification notes have been added on WFS_PIN_CRYPTTRIDESMAC to the WFS_INF_CAPABILITES
and WFS_CMD_PIN_CRYPT commands

EMV
This specification provides the capability to support EMV 4.0 in a branch or self-service environment.

GIE_CB
This specification provides the capability to support GIE-CB, which is the exchange of cryptographic secured
data between hosts and ATMs.

Remote Key Loading
The Pinpad Specification now includes the capability to load the initial master symmetric DES keys in an
automated secure way from a remote location. This is done by two alternative schemes for providing the key-
loading authentication: three-party authentication through certificates and two-party authentication through
signatures.

OPT
This specification also supports OPT (Online Personalization of Terminals). The German ZKA committee has
defined a way to send keys to the EPP in an online dialog.

MAA MAC
This specification supports the ability to do a MAC computation with the MAA algorithm.

Multiple-Part Key Loading
This specification supports Multiple Key Part loading where keys are loaded into the encryptor in parts

CWA 14050-27:2003 (E)

6

2. Backwards Compatibility

2.1. GIE_CB

The WFS_INF_PIN_CAPABILITIES, WFS_ CMD_ PIN_GET_PINBLOCK, WFS_CMD_PIN_CRYPT, and
WFS_CMD_PIN_ENC_IO functions are modified.

2.2. Remote Key Loading

The additional CAPABILITIES and STATUS information have been added via the free-format lpszExtra field. Note
that these fields would be incorporated fully within the CAPABILITIES and STATUS structure for XFS PIN 4.0
release.

All other changes are through the addition of new functions

Applications wishing to use the additional functionality would, require code changes for the new commands.

2.3. OPT

Added new execute command WFS_CMD_PIN_HSM_INIT.
Added new service event WFS_SRVE_PIN_HSM_TDATA_CHANGED.
Added new protocols WFS_PIN_PROTPBM and WFS_PIN_PROTHSMLDI.
Added new tags to WFS_CMD_PIN_HSM_SET_DATA.

2.4. MAA MAC

Just an additional flag to the fwAlgorithms field of the CAPABILITIES structure, using one of the formerly unused
bits.

2.5. Multiple-Part Key Loading

The WFS_INF_PIN_CAPABILITIES, WFS_CMD_PIN_IMPORT_KEY, WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_INF_PIN_KEY_DETAIL and WFS_INF_PIN_KEY_DETAIL_EX functions are modified.

CWA 14050-27:2003 (E)

7

3. New Chapters

3.1. Appendix

This section is used to further explain concepts and functionality that needs further clarification.

The terminology as described below is used within the following sections.

Definitions and Abbreviations

ATM Automated Teller Machine, used here for any type of self-service terminal,
regardless whether it actually dispenses cash

CA Certificate Authority
Certificate A data structure that contains a public key and a name that allows certification of a

public key belonging to a specific individual. This is certified using digital
signatures.

Host The remote system that an ATM communicates with.

KTK Key Transport Key
PKI Public Key Infrastructure
Private Key That key of an entity’s key pair that should only be used by that entity.
Public Key That key of an entity’s key pair that can be made public.
Symmetric Key A key used with symmetric cryptography
Verification Key A key that is used to verify the validity of a certificate
SignatureIssuer An entity that signs the ATM´s public key at production time, may be the ATM

manufacturer

Notation of Cryptographic Items and Functions

SKE The private key belonging to entity E
PKE The public belonging to entity E
SKATM The private key belonging to the ATM/PIN
PKATM The public key belonging to the ATM/PIN
SKHOST The private key belonging to the Host
PKHOST The public key belonging to the Host
SKSI The private key belonging to Signature Issuer
PKSI The public key belonging to Signature Issuer
K NAME A symmetric key
CertHOST A Certificate that contains the public verification of the host and is signed by a

trusted Certificate Authority.
CertATM A Certificate that contains the ATM/PINpublic verification or encipherment key,

which is signed by a trusted Certificate Authority.
CertCA The Certificate of a new Certificate Authority
RATM Random Number of the ATM/PIN
IHOST Identifier of the Host
K KTK Key Transport Key
RHOST Random number of the Host

I ATM Identifier of the ATM/PIN
TPATM Thumb Print of the ATM/PIN
Sign(SKE)[D] The signing of data block D, using the private key SKE

Recover(PKE)[S] The recovery of the data block D from the signature S, using the private key PKE

RSACrypt(PK E)[D] RSA Encryption of the data block D using the public key PKE

Hash [M] Hashing of a message M of arbitrary length to a 20 Byte hash value
Des(K) [D] DES encipherment of an 8 byte data block D using the secret key K
Des-1(K)[D] DES decipherment of an 8 byte data block D using the 8 byte secret key K
Des3(K)[D] Triple DES encipherment of an 8 byte data block D using the 16 byte secret key K =

CWA 14050-27:2003 (E)

8

(KL || KR), equivalent to Des(KL) [Des-1(K R) [Des(KL) [D]]]]
Des3-1 (K) [D] Triple DES decipherment of an 8 byte data block D using the 16 byte secret key K =

(KL || KR), equivalent to Des-1 (KL) [Des (KR) [Des-1 (KL) [D]]]
RndE A random number created by entity E
UIE Unique Identifier for entity E
(A || B) Concatenation of A and B

3.2. Remote Key Loading Using Signatures

3.2.1 RSA Data Authentification & Digital Signatures

Digital signatures rely on a public key infrastructure (PKI). The PKI model involves an entity, such as a Host,
having a pair of encryption keys – one private, one public. These keys work in consort to encrypt, decrypt and
authenticate data. One way authentication occurs is through the application of a digital signature. For example:

• The Host creates some data that it would like to digitally sign;
• Host runs the data through a hashing algorithm to produce a hash or digest of the data. The digest is unique

to every block of data – a digital fingerprint of the data, much smaller and therefore more economical to
encrypt than the data itself;

• Digest is encrypted with the Host’s private key.

This is the digital signature – a data block digest encrypted with the private key. The Host then sends the following
to the ATM:

• data block
• digital signature
• Host’s public key

To validate the signature, the ATM performs the following:
• ATM runs data through the standard hashing algorithm – the same one used by the Host – to produce a

digest of the data received. Consider this digest2;
• ATM uses the Host’s public key to decrypt the digital signature. The digital signature was produced using

the Host’s private key to encrypt the data digest; therefore, when decrypted with the Host’s public key it
produces the same digest. Consider this digest1. Incidentally, no other public key in the world would work
to decrypt digest1 – only the public key corresponding to the signing private key.

• ATM compares digest1 with digest2.

If digest1 matches digest2 exactly, the ATM has confirmed the following:
• Data was not tampered with in transit. Changing a single bit in the data sent from the Host to the ATM

would cause digest2 to be different than digest1. Every data block has a unique digest; therefore, the ATM
detects an altered data block.

• Public key used to decrypt the digital signature corresponds to the private key used to create it. No other
public key could possibly work to decrypt the digital signature, so the ATM was not handed someone else’s
public key.

This gives an overview of how Digital Signatures can be used in Data Authentication. In particular, . Signatures can
be used to validate & securely install Encryption Keys. The following section describes Key Exchange and the use
of Digital signatures.

CWA 14050-27:2003 (E)

9

3.2.2 RSA Secure Key Exchange using Digital Signatures

In summary, both end points, the ATM & the Host, inform each other of their Public Keys. This information is then
used to securely send the PIN device Master Key to the ATM. A trusted third party, the Signature Issuer, is used to
generate the signatures for the Public keys of each end point, ensuring their validity.

The detail of this is as follows: -

Purpose: The Host wishes to install a new master key (KM) on the ATM securely.

Assumptions: 1. The Host has obtained the Public Key (PKSI) from the Signature Issuer

2. The Host has provided the Signature Issuer with its Public Key (PKHOST), and receives the
corresponding signature Sign (SKSI)[PKHOST]. The signature Issuer uses its own Private Key
(SKSI) to create this signature.

4. (Optional). The host obtains a list of the valid PIN device’s Unique Identifiers. The Signature
Issuer installs a Signature Sign(SKSI)[UIATM] for the Unique Id (UIATM) on the ATM PIN. The
Signature Issuer uses SKSI to do this

5. The Signature Issuer installs its Public Key (PKSI) on the ATM PIN. It also derives and installs
the Signature Sign (SKSI)[PKATM] of the ATM PIN’s Public Key (PKATM) on the ATM PIN. The
Signature Issuer uses SKSI to do this.

6. The ATM PIN device additionally contains its own Public (PKATM) & Private Key (SKATM).

Step 1
The ATM PIN sends its Public Key to the Host in a secure structure:
The ATM PIN sends its ATM Public Key with its associated Signature. When the Host receives this information it will use the
Signature Issuer’s Public Key to validate the signature and obtain the ATM Public Key.

The XFS command used to export the PIN public key securely as described above is
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM

Step 2 (Optional)
The Host verifies that the key it has just received is from a valid sender.
It does this by obtaining the PIN device unique identifier. The ATM PIN sends its Unique Identifier with its associated
Signature. When the Host receives this information it will use the Signature Issuer’s Public Key to validate the signature and
retrieve the PIN Unique Identifier. It can then check this against the list it received from the Signature Issuer.

The XFS command used to export the PIN Unique Identifier is
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM.

Step 3
The Host sends its public key to the ATM PIN:
The Host sends its Public Key and associated Signature. The ATM PIN verifies the signature using PKSI and stores the key.

The XFS command used to export the PIN public key securely as described above is
WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Step 4
The ATM PIN receives its Master Key from the Host:
The Host encrypts the Master Key (KM) with PKATM. A signature for this is then created using SKHOST. The ATM PIN will then
validate the signature using PKHOST and then obtain the master key by decrypting using SKATM.

The XFS command used to exchange master symmetric keys as described above is
WFS_CMD_PIN_START_KEY_EXCHANGE
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY.

Step 4 – Alternative including random number

The host requests the ATM PIN to begin the DES key transfer process and generate a random number.

CWA 14050-27:2003 (E)

10

The Host encrypts the Master Key (KM) with PKATM. A signature for the random number and encrypted key is then created using
SKHOST.
The ATM PIN will then validate the signature using PKHOST, verify the random number and then obtain the master key by
decrypting using SKATM.

The XFS commands used to exchange master symmetric keys as described above is
WFS_CMD_PIN_START_KEY_EXCHANGE
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY.

The following diagrams summaries the key exchange process described above:

CWA 14050-27:2003 (E)

11

3.2.3 Initialization Phase – Signature Issuer & ATM PIN

This would typically occur in a secure manufacturing environment

3.2.4 Initialization Phase – Signature Issuer & Host

This would typically occur in a secure offline environment

��������	

���	�

���

������

����

��	
�������������
������

������

����

��	
�������������

��������	

���	�

�
�

�����

����

��	
������������
�����

�����

��	
������������

�����

����

��	
������������

�����

��	
������������

CWA 14050-27:2003 (E)

12

3.2.5 Key Exchange – Host & ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key in a typical ATM
Network. The following is the recommended sequence of interchanges

���

��������������
��	
���������������

�

�������!���
��

��������������
��	
���������������

�

�������!���
���"
����#�����	��
��
����

$
%�&'���������
�������
��	�
�����
��	
������#���������
���
	�������(

�
�

�'���
���&���
����)
�
�*������
��#���

��)����������
��	
���������������

�

��������!���
��

��)����������
��	
����������
������+��
���!���
�

���!&���%�&'��
	

����������

����!���
��

�����,,��	
������������

������,,��	
�������������

-��.�&'������������,,��	
��������
-��.�&'�������������

�����,,��	
������������

CWA 14050-27:2003 (E)

13

3.2.6 Key Exchange (with random number) – Host & ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key when the PIN device and
service provider supports the WFS_CMD_PIN START_KEY_EXCHANGE command.

�	��	�������

���

��������������
��	
���������������

�

�������!���
��

��������������
��	
���������������

�

�������!���
���"
����#�����	��
��
����

�������*�����
��
��/�
�/!��
-���

$
%�&'���������
�������
��	�
�����
��	
������#���-���

�
���
%�&'���
������
���
	�������(

�
�

�'���
���&���
����)
�
�*������
��#���

��)����������
��	
���������������

�

��������!���
��

��)�	�
������
��
��/�
�/!��+
-���+��
���������0�&
�1%��
	�

��)����������
��	
����������
������+����������

-�����
���!���
����

!&���%�&'��
	�����
�����

����!���
��

�����,,��	
������������

������,,��	
�������������

-���,,-��.�&'������������
,,��	
��������-����,,-��.�&'�������

�����

�����,,��	
������������

����

CWA 14050-27:2003 (E)

14

3.2.7 Default Keys and Security Item loaded during manufacture

Several keys and a security item that is mandatory for the 2-party/Signature-authentication scheme are installed
during manufacture. These items are given fixed names so multi-vendor applications can be developed without the
need for vendor specific configuration tools.

Item Name Item Type Signed by Description

“_SigIssuerVendor” Public Key N/A The public key of the signature
issuer, ie PKSI

“_EPPCryptKey” Public/Private
key-pair

The private key
associated with
_SigIssuerVendor

The key-pair used to encrypt and
decrypt the symmetric key, ie
SKATM and PKATM.The public
key is used for encryption by the
host and the private for
decryption by the EPP.

In addition the following optional keys can be loaded during manufacture.
Item Name Item Type Signed by Description

“_EPPSignKey” Public/Private
key-pair

The private key
associated with
_SigIssuerVendor

A key-pair where the private key
is used to sign data, e.g. other
generated key pairs.

CWA 14050-27:2003 (E)

15

3.3. Remote Key Loading Using Certificates

3.3.1 Certificate Exchange and Authentication

In summary, both end points, the ATM & the Host, inform each other of their Public Keys. This information is then
used to securely send the PIN device Master Key to the ATM. A trusted third party, Certificate Authority (or a
HOST if it becomes the new CA), is used to generate the certificates for the Public Keys of each end point, ensuring
their validity. NOTE: The WFS_CMD_PIN_LOAD_CERTIFICATE and WFS_CMD_PIN_GET_CERTIFICATE
do not necessarily need to be called in the order below. This way though is the recommend way.
The following flow is how the exchange authentication takes place:

1) WFS_CMD_PIN_LOAD_CERTIFICATE is called. In this message contains the host certificate, which
has been signed by the trusted CA. The encryptor uses the Public Key of the CA (loaded at the time of
production) to verify the validity of the certificate. If the certificate is valid, the encryptor stores the
HOST’s Public Verification Key.

2) Next, WFS_CMD_PIN_GET_CERTIFICATE is called. The encryptor then sends a message that contains
a certificate, which is signed by the CA and is sent to the HOST. The HOST uses the Public Key from the
CA to verify the certificate. If valid then the HOST stores the encryptor’s verification or encryption key
(primary or secondary this depends on the state of the encryptor).

The following diagram below shows how the Host and ATM Load and Get each others information to make Remote
Key Loading possible:

���

������
������

.�������

���������-�*�����
����������&�(

�������������#�������
/����	�(���#���
����#�������
���
�����������0�&(

�
�

������)�����#�������
/����	�(���#���
����#�������
����������
����0�&��
�������
�
�������/!'��
�(

������)���
������
0�&���
������#��
%����#�%���(

�	������

�	�����

TPATM

Request for CertATM

CWA 14050-27:2003 (E)

16

3.3.2 Remote Key Exchange

After the above has been completed, the HOST is ready to load the key into the encryptor. The following is done to
complete this and the application must complete the Remote Key Exchange in this order:

1) First, the WFS_CMD_PIN_START_KEY_EXCHANGE is called. This returns RATM from the encryptor
to be used in the authenticating the WFS_CMD_PIN_ IMPORT_RSA_ENCHIPERED_PKCS7_KEY
message.

2) Next, WFS_CMD_PIN_ IMPORT_RSA_ENCIPHERED_PKCS7_KEY is called. This commands sends
down the KTK to the encryptor. The following items below show how this is accomplished.

a) HOST has obtained a Key Transport Key and wants to transfer it to the encryptor. HOST constructs a
key block containing an identifier of the HOST, IHOST, and the key, KKTK, and enciphers the block, using
the encryptor’s Public Encryption Key from the WFS_CMD_PIN_GET CERTIFICATE command.

b) After completing the above, the HOST generates random data and builds the outer message containing
the random number of the host, RHOST, the random number of the encryptor returned in the
WFS_CMD_PIN_START_KEY_EXCHANGE command, RATM , the identifier of the encryptor, IENC, and
the enciphered key block. The HOST signs the whole block using its private signature key and sends the
message down to the encryptor.

The encryptor then verifies the HOST’s signature on the message by using the HOST’s Public Verification
Key. Then checks the identifier and the random number of the encryptor passed in the message to make
sure that the encryptor is talking to the right HOST. The encryptor then deciphers the enciphered block
using it’s private verification key. After the message has been deciphered, the encryptor checks the
Identifier of the HOST. Finally, if everything checks out to this point the encryptor will load the Key
Transport Key. NOTE: If one step of this verification occurs the encryptor will return the proper error to
the HOST.

c) After the Key Transport Key has been accepted, the encryptor constructs a message that contains the
random number of the host, the random number of the encryptor and the HOST identifier all signed by the
private signature key of the encyrptor. This message is sent to the host.

d) The HOST verifies the message sent from the encryptor by using the ATM’s public verification key.
The HOST then checks the identifier of the host and then compares the identifier in the message with the
one stored in the HOST. Then checks the random number sent in the message and to the one stored in the
HOST. The HOST finally checks the encryptor’s random number with the one recieved in received in the
WFS_CMD_PIN_START_KEY_EXCHANGE command.

The following diagram below shows how the Host and ATM transmit the Key Transport Key.

CWA 14050-27:2003 (E)

17

���

�������������������
��&�$1%��
	�
'��%���(

�����������%�����
����������&
���
�'������&��
�
��
���������	
��
/����	�

�����������%�����
����/����	���
�
����#��������/����	�
�
��%��%0�����/�0�
��������������0�
	���
���������	������(

�
�

������)�	�
������
��
��/�
�/!����
�
��
�����������������

������)�����#�������
/����	����
���#
�������������������
0�&(��������)����

��
�����/����	�
!�%0������������(

����

������������������������
���������������������
�����������

������������������������
����

�	��	�������

CWA 14050-27:2003 (E)

18

3.3.3 Replace Certificate

After the key is been loaded into the encryptor, the following could be completed:

1) (Optional) WFS_CMD_PIN_REPLACE_CERTIFICATE. This is called by entity that would like to take
over the job of being the CA. The new CA requests a Certificate from the previous Certificate Authority.
The HOST must over-sign the message to take over the role of the CA to ensure that the encryptor accepts
the new Certificate Authority. The HOST sends the message to the encryptor. The encryptor uses the
HOST’s Public Verification Key to verify the HOST’s signature. The encryptor uses the previous CA’s
Public Verification Key to verify the signature on the new Certificate sent down in the message. If valid,
the EPP stores the new CA’s certificate and uses the new CA’s Public Verification Key, as it’s new CA
verification key. The diagram below shows how the Host and the ATM communicates to load the new CA.

3.3.4 Primary and Secondary Certificates

� Primary and Secondary Certificates for both the Public Verification Key and Public Encipherment Key are
pre-loaded into the encryptor. Primary Certificates will be used until told otherwise by the HOST via the
WFS_CMD_PIN_LOAD_CERTIFICATE or WFS_CMD_PIN_REPLACE_CERTIFICATE commands.
This change in state will be specified in the PKCS #7 message of the
WFS_CMD_PIN_LOAD_CERTIFICATE or WFS_CMD_PIN_REPLACE_CERTIFICATE commands.
The reason why the HOST would want to change states is because the HOST thinks that the Primary
Certificates have been compromised.

� After the HOST tells the encryptor to shift to the secondary certificate state, and then only Secondary
Certificates can be used. The encryptor will no longer be able to go back to the Primary State and any
attempts from the HOST to get or load a Primary Certificate will return an error. When either Primary or
Secondary certificates are compromised it is up to the vendor on how the encryptor should be handled with
the manufacturer.

���

�������
�����
��0��.��������+
��
���
��
.����#�%���

�
�

������)�����#�������
/����	�2��#����������
��)������������
��
.�(

������)����
���
��
�������/!'��
�(

�������������	�����

TPATM

CWA 14050-27:2003 (E)

19

�
3.4. German ZKA GeldKarte

3.4.1 Protocol WFS_PIN_PROTPBM

This protocol handles host messages between a terminal and a host system, as specified by PBM protocol.

For a documentation of this protocol see [Ref. 8] – [Ref. 13].

Some additions are defined to the PBM protocol in order to satisfy the German ZKA 3.0 PAC/MAC standard. See
[Ref. 14].

The commands WFS_CMD_PIN_SECURE_MSG_SEND and WFS_CMD_PIN_SECURE_MSG_RECEIVE
handle the PAC and MAC in the VARDATA ‘K’ or ‘Q’ subfield of transactions records and responses. The MAC in
the traditional MACODE field is not affected.

In order to enable the service provider to understand the messages, the application must provide the messages
according to the following rules:
All alphanumeric fields must be coded in EBCDIC
Pre-Edit (padding and blank compression) must not be done by the application. The service provider will check the
MACMODE field and will perform the pre-edit according to what the MACMODE field intends.
In order to enable the service provider to find the vardata subfield ‘K’ or ‘Q’, it must be included in the message by
the application, with the indicator ‘K’ or ‘Q’ and its length set.
Because CARDDATA (track 2) and T3DATA (track 3) fields always take part in the MAC computation for a
transaction record, these fields must be included in the message, even if they already have been sent to the host in a
previous transaction record and the CI-Option SHORTREC prevents them from being sent again.

3.4.2 Protocol WFS_PIN_PROTHSMLDI

With this protocol an application can request information about the personalized OPT groups.

The information returned consists of personalisation record like in BMP62 of an OPT response but without MAC.

Data format:

XX XX VV group ID and version number (BCD format)
XX number of LDIs within the group (BCD format)
...
first LDI of the group
...
last LDI of the group
XX XX VV group ID and version number (BCD format)
...
etc. for several groups

Each LDI consists of
NN Number of the LDI
00 Alg. code
LL Length of the following data
XX...XX data of the LDI

For each group ID the Service Provider must always return the standard LDI. LDI 01 must also be returned for
groups AF XX VV. Further LDIs can be returned optionally.

CWA 14050-27:2003 (E)

20

3.5. EMV Support

EMV support by this specification consists in the ability of importing Certification Authority and Chip Card public
keys, creating the PIN Blocks for offline PIN verification and verifying static and dynamic data.
This section is used to further explain concepts and functionality that needs further clarification.

The PIN service is able to manage the EMV chip card regarding the card authentication and the RSA local PIN
verification. Two steps are mandatory in order to reach these two functions: The loading of the keys which come
from the Certification Authorities or from the card itself, and the EMV PIN block management.

The service provider is responsible for all key validation during the import process. The application is responsible
for management of the key lifetime and expiry after the key is successfully imported.

3.5.1 Keys loading

The final goal of an application is to retrieve the keys located on card to perform the operations of authentication or
local PIN check (RSA encrypted). These keys are provided by the card using EMV certificates and can be retrieved
using a public key provided by a Certification Authority. The application should first load the keys issued by the
Certification Authority. At transaction time the application will use these keys to load the keys that the application
has retrieved from the chip card

3.5.2 Certification Authority keys

These keys are provided in the following formats:
• Plain text
• Plain Text with EMV 2000 Verification Data (See [Ref. 4] under the reference section for this document)
• EPI CA (or self signed) format as specified in the Europay International, EPI CA Module Technical – Interface

specification Version 1.4.
• PKCSV1_5 encrypted (as used by GIECB in France).

EPI CA format
The following table corresponds to table 4 of the Europay International, EPI CA Module Technical – Interface
specification Version 1.4 and identifies the Europay Public Key (self-certified) and the associated data:

Field name Length Description Format
ID of Certificate Subject 5 RID for Europay Binary
Europay public key Index 1 Europay public key Index Binary
Subject public key Algorithm
Indicator

1 Algorithm to be used with the Europay public
key Index, set to 0x01

Binary

Subject public key Length 1 Length of the Europay public key Modulus
(equal to Nca)

Binary

Subject public key Exponent
Length

1 Length of the Europay public key Exponent Binary

Leftmost Digits of Subject public
key

Nca-37 Nca-37 most significant bytes of the Europay
public key Modulus

Binary

Subject public key Remainder 37 37 least significant bytes of the Europay public
key Modulus

Binary

Subject public key Exponent 1 Exponent for Europay public key Binary
Subject public key Certificate Nca Output of signature algorithm Binary

Table 1

 The following table corresponds to table 13 of the Europay International, EPI CA Module Technical – Interface
specification Version 1.4 and identifies the Europay Public Key Hash code and associated data.:

CWA 14050-27:2003 (E)

21

Field name Length Description Format
ID of Certificate Subject 5 RID for Europay Binary
Europay public key Index 1 Europay public key Index Binary
Subject public key Algorithm
Indicator

1 Algorithm to be used with the Europay public
key Index, set to 0x01

Binary

Certification Authority public key
Check Sum

20 Hash-code for Europay public key Binary

Table 2

Table 2 corresponds to table 13 of the Europay International, EPI CA Module Technical – Interface specification
Version 1.4.

3.5.3 Chip card keys

These keys are provided as EMV certificates which come from the chip card in a multiple layer structure (issuer key
first, then the ICC keys). Two kinds of algorithm are used with these certificates in order to retrieve the keys: One
for the issuer key and the other for the ICC keys (ICC public key and ICC PIN encipherment key). The associated
data with these algorithms – The PAN (Primary Account Number) and the SDA (Static Data to be Authenticated) -
come also from the chip card.

3.5.4 PIN block management

The PIN block management is done through the command WFS_CMD_PIN_GET_PINBLOCK. A new format
WFS_PIN_FORMEMV has been added to indicate to the PIN service that the PIN block must follow the
requirements of the EMVco, Book2 – Security & Key management Version 4.0 document The parameter
lpsCustomerData is used in this case to tranfer to the PIN service the challenge number coming from the chip card.
The final encryption must be done using a RSA public key. Please note that the application is responsible to send the
PIN block to the chip card inside the right APDU.

3.5.5 SHA-1 Digest

The SHA-1 Digest is a hash algorithm used by EMV in validating ICC static and dynamic data item. The SHA-1
Digest is supported through the WFS_CMD_PIN_ DIGEST command. The application will pass the data to be
hashed to the service provider. Once the encryptor completes the SHA-1 hash code, the Service Provider will return
the 20-byte hash value back to the application.

CWA 14050-27:2003 (E)

22

3.6. French Cartes Bancaires

“Groupement des Cartes Bancaires” from France has specified a cryptographic architecture for ATM networks. See
the document [Ref. 15] for details.

The XFS command WFS_CMD_PIN_ENC_IO with the protocol WFS_PIN_ENC_PROT_GIECB is used for
• ATM initialization
• Renewal of ATM master key
• Renewal of HOST master key
• Generation and loading of key transport key

Keys loaded or generated with WFS_CMD_PIN_ENC_IO get names like any other keys in a XFS PIN service.
WFS_INF_PIN_KEY_DETAIL_[EX] shows the key with this name and the name may be used with
WFS_CMD_PIN_IMPORT_KEY[_EX] to delete a key.

3.6.1 Data Structure for WFS_CMD_PIN_ENC_IO

Data will be transferred as tag-length-value (TLV) structure, encoded according to the distinguished encoding rules
(DER) defined in [Ref. 16]

The following is a list of top-level tags defined for the use with WFS_PIN_ENC_PROT_GIECB. All these tags
have the APPLICATION class, therefore the Identifier Octets are (binary)

0 1 0 n n n n n for the primitive types
0 1 1 n n n n n for the constructed types

Tag Number Primitive /
Constructed

Identifier
Octet

Contents

0 P 0x40 Protocol Version

The INTEGER value zero for this version of the
protocol

1 P 0x41 Interchange Code

An ASCII string holding one of the interchange
codes defined in [REF. 15], e.g. “HRN-H1”

2 C 0x62 Interchange Data

The data items as defined by [REF. 15], see table
below for details

3 P 0x43 Key Name

An ASCII string holding the name for the key
being loaded or generated.

The Interchange Data (Tag 2) is constructed from data items where tag numbers of the sub-tags from 1 to 23
correspond to the data item numbers (“No donnée”) as defined in section 3.1 of [Ref. 15]. Some of the data items
consist of data elements, for these the constructed encoding will be used. For data items with no data elements the
primitive encoding will be used.

All Tags have the CONTEXT class, therefore the Identifier Octets are (binary)
1 0 0 n n n n n for the primitive types
1 0 1 n n n n n for the constructed types

CWA 14050-27:2003 (E)

23

Tag (=Data
Item No)

Primitive /
Constructed

Identifier
Octet

Data Item Label

1 C 0xA1 IdKG

2 C 0xA2 KTK-encrypted

3 C 0xA3 KGp

4 C 0xA4 KDp

5 C 0xA5 SnSCD

6 P 0x86 Rand

7 P 0x87 HOST authentication

8 P 0x88 KDp signature

9 P 0x89 KGp signature

10 P 0x8A KTK signature

11 P 0x8B KT-encrypted

12 P 0x8C Ksc-encrypted

13 P 0x8D PIN cryptogram

14 P 0x8E Seal

15 P 0x8F Thumbprint of KDp

16 P 0x90 Thumbprint of KGp

17 C 0xB1 IdKD

18 C 0xB2 IdKTK

19 C 0xB3 IdKT

20 C 0xB4 IdKSC

21 P 0x95 Manufacturer

22 C 0xB6 SCD type

23 C 0xB7 Firmware version

Inside the constructed data items, primitive encoding is used for the data elements, all tags having CONTEXT class
with tag numbers corresponding to the data element numbers (“No d’élément de donnée”) as defined in section 3.1
of [Ref. 15].

Example:
The example shows the DER encoding of the input for a WFS_CMD_PIN_ENCIO command, for the
interchange “GIN-H5”. All data except the 128-byte content of data item 7 is shown in hexadecimal (0x
omitted for the sake of readability).

40 01 00 (tag / length / value for Protocol Version 0)
41 06 47 49 4E 2D 47 34 (tag / length / value for Interchange Code “GIN-H5”)
62 81 B5 (tag / length for Interchange Data)
 A1 14 (tag / length for data item 1)
 81 01 00 (data element 1)
 82 0C 00 00 00 00 00 00 00 00 00 00 00 00 (data element 2)
 83 01 00 (data element 3)
 A5 10 (tag / length for data item 5)
 81 03 00 00 00 (data element 1)
 82 09 00 00 00 00 00 00 00 00 00 (data element 2)
 86 08 00 00 00 00 00 00 00 00 (tag / length / value for data item 6)
 87 81 80 <128 bytes> (tag / length / value for data item 7)
43 05 4D 59 4B 45 59 (tag / length / value for Key Name “MYKEY”)

CWA 14050-27:2003 (E)

24

3.6.2 Command Sequence

The following list shows the sequence of actions an application has to take for the various Cartes Bancaires
interchanges.

GIN (ATM initialization)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

Thumbprint supplied by host via external channel (GIN-H1)

WFS_CMD_PIN_ENCIO GIN-G2 21,22,23

Host Communication (GIN-G2 / GIN-H3)

WFS_CMD_PIN_ENCIO GIN-H3 Key Name for
KG

3 16

WFS_CMD_PIN_ENCIO GIN-G4 5,6,1

Host Communication (GIN-G4 / GIN-H5)

WFS_CMD_PIN_ENCIO GIN-H5 Key Name for
KD

5,6,1,7

WFS_CMD_PIN_ENCIO GIN-G6 5,4,8

Host Communication (GIN-G6)

WFS_CMD_PIN_ENCIO GIN-G7 15

Send thumbprint to host via external channel (GIN-G7)

GRN (Renewal of ATM Master Key)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

WFS_CMD_PIN_ENCIO GRN-G1 5,6,1

Host Communication (GRN-G1 / GRN-H2)

WFS_CMD_PIN_ENCIO GRN-H2 Key Name for
KD

5,6,1,7

WFS_CMD_PIN_ENCIO GRN-G3 5,4,8,17

Host Communication (GRN-G3)

WFS_CMD_PIN_ENCIO GRN-C

or

GRN-R

17

The Interchange codes “GRN-C” to commit the transaction resp. “GRN-R” to roll back the transactions are an
addition to those defined in [Ref. 15]

CWA 14050-27:2003 (E)

25

HRN (Renewal of HOST Master Key)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

Host Communication (HRN-H1)

WFS_CMD_PIN_ENCIO HRN-H1 Key Name for
KG

3,9,1

DKT (Generation and Loading of KTK)

Action Interchange
Code

Key Name Input
Data Items

Output
Data Items

WFS_CMD_PIN_ENCIO DKT-G1 5,6

Host Communication (DKT-G1 / DKT-H2)

WFS_CMD_PIN_ENCIO DKT-H2 Key Name for
KTK

5,6,2,10,1,17

4. Changes to existing Chapters

4.1. References

1 XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.00, October 18, 2000

2 RSA Laboratories, PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November 1993
3 SHA-1 Hash algorithm ANSI 9:30:2-1993: Public Key Cryptography for Financial Services Industry Part2
4 EMVCo, EMV2000 Integrated Circuit Card Specification for Payment Systems, Book 2 – Security and Key

Management, Version 4.0, December 2000
5 Europay International, EPI CA Module Technical – Interface specification Version 1.4
6 ZKA / Bank-Verlag, Köln, Schnittstellenspezifikation für die ec-Karte mit Chip, Online-Personalisierung von

Terminal-HSMs, Version 3.0, 2. 4. 1998
7 ZKA / Bank-Verlag, Köln, Schnittstellenspezifikation für die ZKA-Chipkarte, Online-Vor-Initialisierung und

Online-Anzeige einer Außerbetriebnahme von Terminal-HSMs, Version 1.0, 04.08.2000
8 473x Programmers Reference Volume 1 - TP-820399-001A
9 473x Programmers Reference Volume 2 - TP-820403-001A
10 473x Programmers Reference Volume 3 - TP-820400-001A
11 473x Programmers Reference Volume 4 - TP-820404-001A
12 473x P-Model Programmers Reference - TP-820397-001A
13 473x Log Reference Guide - TP-820398-001A
14 Diebold‘s Specification for support of Online Preinitialization and Personalization of Terminal HSMs (OPT)

and support for the PAC/MAC standards for the 473x Protocol, Diebold USA, Revision 1.10, revised on May
2002

15 Groupement des Cartes Bancaires “CB”, Description du format et du contenu des données cryprographiques
échangées entre GAB et GDG, Version 1.3 / Octobre 2002

16 ITU-T Recommendation X.690 – ASN.1 encoding rules (also published as ISO/IEC International Standard
8825-1), 1997

CWA 14050-27:2003 (E)

26

4.2. Protocol WFS_PIN_PROTISOLZ

This protocol handles ISO8583 messages between a „Ladeterminal" and a „Ladezentrale" (LZ).

Only messages in the new ISO format, with new MAC-format using session keys and Triple-DES are supported.

Both types of GeldKarte chip (type 0 = DEM, type 1 = EUR) are supported.

The service provider fills the following bitmap positions:
BMP11: Trace-Nummer
BMP57: Verschlüsselungsparameter (only the challenge value RNDMES)
BMP64: MAC

These bitmaps have to be present and the corresponding flag has to be set in the primary bitmap when the ISO
message is passed to the HSM.

The following bitmap positions are checked by the service provider and have to be filled by the application:
Nachrichtentyp
BMP3: Abwicklungskennzeichen
BMP4: Transaktionsbetrag
BMP12: Uhrzeit
BMP13: Datum
BMP25: Konditionscode
BMP41: Terminal-ID
BMP42: Betreiber-BLZ (caution: "Ladeentgelt" also in BMP42 is not set by the EPP)
BMP61: Online-Zeitpunkt
BMP62: Chipdaten

The following bitmap positions are only checked if they are available:
BMP43: Standort
BMP60: Kontodaten Ladeterminal

For a documentation of the Ladezentrale interface see [Ref. 6].

4.3. Protocol WFS_PIN_PROTISOPS

This protocol handles ISO8583 messages between a terminal and a "Personalisierungsstelle" (PS). These messages
are about OPT.

The service provider creates the whole message with WFS_CMD_PIN_SECURE_MSG_SEND, including message
type and bitmap.

For a documentation of the Personalisierungsstelle interface see [Ref. 6] and [Ref. 7].

4.4. Protocol WFS_PIN_PROTCHIPZKA

This protocol is intended to handle messages between the application and a GeldKarte.

Both types of GeldKarte are supported.

Both types of load transactions ("Laden vom Kartenkonto" and "Laden gegen andere Zahlungsmittel") are
supported.

See the chapter "Command Sequence" below for the actions that service providers take for the various chip card
commands.

Only the command APDUs to and the response APDUs from the chip must be passed to the service provider, the
ATR (answer to reset) data from the chip is not passed to the service provider.

CWA 14050-27:2003 (E)

27

For a documentation of the chip commands used to load a GeldKarte see [Ref. 6].

5. New Info Commands

None.

6. Changes to existing Info Commands

6.1. WFS_INF_PIN_STATUS

Description The WFS_INF_PIN_STATUS command returns several kinds of status information.

Input Param None.

Output Param LPWFSPINSTATUS lpStatus;

typedef struct _wfs_pin_status
{
WORD fwDevice;
WORD fwEncStat;
LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

fwDevice
Specifies the state of the PIN pad device as one of the following flags:
Value Meaning
WFS_PIN_DEVONLINE The device is online (i.e. powered on and operable).
WFS_PIN_DEVOFFLINE The device is offline (e.g., the operator has taken the

device offline by turning a switch or pulling out the
device).

WFS_PIN_DEVPOWEROFF The device is powered off or physically not connected.
WFS_PIN_DEVNODEVICE There is no device intended to be there; e.g. this type of

self-service machine does not contain such a device or it
is internally not configured.

WFS_PIN_DEVHWERROR The device is inoperable due to a hardware error.
WFS_PIN_DEVUSERERROR The device is present but a person is preventing proper

device operation.
WFS_PIN_DEVBUSY The device is busy and unable to process an execute

command at this time.
fwEncStat
Specifies the state of the Encryption Module as one of the following flags:
Value Meaning
WFS_PIN_ENCREADY The encryption module is initialized and ready (at least

one key is imported into the encryption module).
WFS_PIN_ENCNOTREADY The encryption module is not ready.
WFS_PIN_ENCNOTINITIALIZED The encryption module is not initialized (no master key

loaded).
WFS_PIN_ENCBUSY The encryption module is busy (implies that the device is

busy).
WFS_PIN_ENCUNDEFINED The encryption module state is undefined.
WFS_PIN_ENCINITIALIZED The encryption module is initialized and master key

(where required) and any other initial keys are loaded;
ready to import other keys.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extendable by service providers.
Each string will be null-terminated, with the final string terminating with two null characters.

CWA 14050-27:2003 (E)

28

For Remote Key Loading using Certificates, the following key/value pairs indicate the level of
support of the service provider. If these pairs are not returned then this indicates the SP does not
support the corresponding feature:

CERTIFCATESTATE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation of a
hexadecimal value. This state determines which public verification or encryption key should be
read out of the device. For example CERTIFICATESATE =0x00000001 indicates that the state
of the Encryptor is Primary. The possible values are the following:

Value Meaning

WFS_PIN_CERT_PRIMARY The encryption module indicates that all pre-loaded
certificates have been loaded and that primary
verification certificates will be accepted for the
commands WFS_CMD_PIN_LOAD_CERTIFICATE or
WFS_CMD_PIN_REPLACE_CERTIFICATE

WFS_PIN_CERT_SECONDARY The encryption module indicates that primary verification
certificates will not be accepted and only secondary
verification certificates will be accepted. If primary
certificates have been compromised (which the certificate
authority or the host detects), then secondary certificates
should be used in any transaction. This is done by calling
the WFS_CMD_PIN_LOAD_CERTIFICATE command
or the WFS_CMD_PIN_REPLACE_CERTIFICATE.

WFS_PIN_CERT_NOTREADY The certificate module is not ready. (The device is
powered off or physically not present).

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications that require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

CWA 14050-27:2003 (E)

29

6.2. WFS_INF_PIN_CAPABILITIES

Description This command is used to retrieve the capabilities of the PIN pad.

Input Param None.

Output Param LPWFSPINCAPS lpCaps;

typedef struct _wfs_pin_caps
{
WORD wClass;
WORD fwType;
BOOL bCompound;
USHORT usKeyNum;
WORD fwAlgorithms;
WORD fwPinFormats;
WORD fwDerivationAlgorithms;
WORD fwPresentationAlgorithms;
WORD fwDisplay;
BOOL bIDConnect;
WORD fwIDKey;
WORD fwValidationAlgorithms;
WORD fwKeyCheckModes;
LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

wClass
Specifies the logical service class, value is:
WFS_SERVICE_CLASS_PIN

fwType
Specifies the type of the PIN pad security module as a combination of the following flags. PIN
entry is only possible when at least WFS_PIN_TYPEEPP and WFS_PIN_TYPEEDM are set.
In order to use the ZKA-Electronic purse, all flags must be set.

Value Meaning
WFS_PIN_TYPEEPP electronic PIN pad (keyboard data entry device)
WFS_PIN_TYPEEDM encryption/decryption module
WFS_PIN_TYPEHSM hardware security module (electronic PIN pad and

encryption module within the same physical unit)

bCompound
Specifies whether the logical device is part of a compound physical device and is either TRUE
or FALSE.

usKeyNum
Number of the keys which can be stored in the encryption/decryption module.

fwAlgorithms
Supported encryption modes; a combination of the following flags:

Value Meaning
WFS_PIN_CRYPTDESECB Electronic Code Book
WFS_PIN_CRYPTDESCBC Cipher Block Chaining
WFS_PIN_CRYPTDESCFB Cipher Feed Back
WFS_PIN_CRYPTRSA RSA Encryption
WFS_PIN_CRYPTECMA ECMA Encryption
WFS_PIN_CRYPTDESMAC MAC calculation using CBC
WFS_PIN_CRYPTTRIDESECB Triple DES with Electronic Code Book
WFS_PIN_CRYPTTRIDESCBC Triple DES with Cipher Block Chaining
WFS_PIN_CRYPTTRIDESCFB Triple DES with Cipher Feed Back
WFS_PIN_CRYPTTRIDESMACLast Block Triple DES MAC as defined in ISO/IEC

9797-1:1999, using: block length n=64, Padding Method
1 (when bPadding=0), MAC Algorithm 3, MAC length m
where 32<=m<=64

CWA 14050-27:2003 (E)

30

WFS_PIN_CRYPTMAAMAC MAC calculation using the Message authenticator
algorithm as defined in ISO 8731-2

fwPinFormats
Supported PIN formats; a combination of the following flags:

Value Meaning
WFS_PIN_FORM3624 PIN left justified, filled with padding characters, PIN

length 4-16 digits. The Padding Character is a
Hexadecimal Digit in the range 0x00 to 0x0F.

WFS_PIN_FORMANSI PIN is preceded by 0x00 and the length of the PIN (0x04
to 0x0C), filled with padding character 0x0F to the right,
PIN length 4-12 digits, XORed with PAN (Primary
Account Number, minimum 12 digits without check
number)

WFS_PIN_FORMISO0 PIN is preceded by 0x00 and the length of the PIN (0x04
to 0x0C), filled with padding character 0x0F to the right,
PIN length 4-12 digits, XORed with PAN (Primary
Account Number, no minimum length specified, missing
digits are filled with 0x00)

WFS_PIN_FORMISO1 PIN is preceded by 0x01 and the length of the PIN (0x04
to 0x0C), padding characters are taken from a transaction
field (10 digits).

WFS_PIN_FORMECI2 (similar to WFS_PIN_FORM3624), PIN only 4 digits
WFS_PIN_FORMECI3 PIN is preceded by the length (digit), PIN length 4-6

digits, the padding character can range from X’0’ through
X’F’.

WFS_PIN_FORMVISA PIN is preceded by the length (digit), PIN length 4-6
digits. If the PIN length is less than six digits the PIN is
filled with X’0’ to the length of six, the padding character
can range from X ' 0 ' through X ' 9 ' (This format is also
referred to as VISA2).

WFS_PIN_FORMDIEBOLD PIN is padded with the padding character and may be not
encrypted, single encrypted or double encrypted.

WFS_PIN_FORMDIEBOLDCO PIN with the length of 4 to 12 digits, each one with a
value of X’0’ to X’9’, is preceded by the one-digit
coordination number with a value from X’0’ to X’F’,
padded with the padding character with a value from X’0’
to X’F’ and may be not encrypted, single encrypted or
double encrypted.

WFS_PIN_FORMVISA3 PIN with the length of 4 to 12 digits, each one with a
value of X’0’ to X’9’, is followed by a delimiter with the
value of X’F’ and then padded by the padding character
with a value between X’0’ to X’F’.

WFS_PIN_FORMBANKSYS PIN is encrypted and formatted according to the Banksys
Pin Block specifications.

WFS_PIN_FORMEMV The PIN block is constructed as follows: PIN is preceded
by 0x02 and the length of the PIN (0x04 to 0x0C), filled
with padding character 0x0F to the right, formatted up to
248 bytes of other data as defined within the EMV 4.0
specifications and finally encrypted with an RSA key.

WFS_PIN_FORMISO3 PIN is preceded by 0x03 and the length of the PIN (0x04
to 0x0C), padding characters sequentially or randomly
chosen, XORed with digits from PAN.

fwDerivationAlgorithms
 Supported derivation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_CHIP_ZKA Algorithm for the derivation of a chip card individual key

as described by the German ZKA.

CWA 14050-27:2003 (E)

31

fwPresentationAlgorithms
 Supported presentation algorithms; a combination of the following flags:

Value Meaning
WFS_PIN_PRESENT_CLEAR Algorithm for the presentation of a clear text PIN to a

chipcard.

fwDisplay
Specifies the type of the display used in the PIN pad module as one of the following flags:

Value Meaning
WFS_PIN_DISPNONE no display unit
WFS_PIN_DISPLEDTHROUGH lights next to text guide user
WFS_PIN_DISPDISPLAY a real display is available (this doesn’t apply for self-

service)

bIDConnect
Specifies whether the PIN pad is directly physically connected to the ID card unit. The value of
this parameter is either TRUE or FALSE.

fwIDKey
Specifies whether an ID key is supported as a combination of the following flags:

Value Meaning
WFS_PIN_IDKEYINITIALIZATION ID key supported in the

WFS_CMD_PIN_INITIALIZATION command.
WFS_PIN_IDKEYIMPORT ID key supported in the

WFS_CMD_PIN_IMPORT_KEY command.

fwValidationAlgorithms
Specifies the algorithms for PIN validation supported by the service; combination of the
following flags:

Value Meaning
WFS_PIN_DES DES algorithm
WFS_PIN_EUROCHEQUE EUROCHEQUE algorithm
WFS_PIN_VISA VISA algorithm
WFS_PIN_DES_OFFSET DES offset generation algorithm
WFS_PIN_BANKSYS Banksys algorithm.

fwKeyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key
value; can be a combination of the following flags:

Value Meaning
WFS_PIN_KCVSELF The key check value is created by an encryption of

the key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of

the key with a zero value.

lpszExtra
Points to a list of vendor-specific, or any other extended information. The information is
returned as a series of “key=value” strings so that it is easily extendable by service providers.
Each string is null-terminated, with the final string terminating with two null characters.

For German HSMs this parameter will contain the following information:

- HSM=<HSM vendor> (can contain the values KRONE, ASCOM, IBM or NCR)

- JOURNAL=<0/1> (0 means that the HSM does not support journaling by the
WFS_CMD_PIN_GET_JOURNAL command, 1 means it supports journaling)

For Remote Key Loading the following key/value pairs indicate the level of support of the
service provider. If these pairs are not returned then this indicates the SP does not support the
corresponding feature:

- REMOTE_KEY_SCHEME=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation
of a hexadecimal value. REMOTE_KEY_SCHEME will specify to the user which type(s)
of Remote Key Loading/Authentication is supported. For example,

CWA 14050-27:2003 (E)

32

“REMOTE_KEY_SCHEME=0x00000002” indicates that three-party certificates are
supported. The support level is defined as a combination of the following flags:

Value Meaning
WFS_PIN_RSA_AUTH_2PARTY_SIG Two-party Signature based

authentication
WFS_PIN_RSA_AUTH_3PARTY_CERT Three-party Certificate based

authentication

- RSA_SIGN_ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation
of a hexadecimal value. RSA_SIGN_ALGORITHM will specify what type(s) of RSA
Signature Algorithms is supported. For example,
“RSA_SIGN_ALGORITHM=0x00000001” indicates that RSASSA_PKCS1_V1_5 is
supported. The support level is defined as a combination of the following flags:

Value Meaning
WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 SSA_PKCS_V1_5 Signatures

supported
WFS_PIN_SIGN_RSASSA_PSS SSA_PSS Signatures supported

- RSA_CRYPT_ALGORITHM=<0xnnnnnnnn>, where nnnnnnnn is the ASCII
representation of a hexadecimal value. RSA_CRYPT_ALGORITHM will specify what
type(s) of RSA encipherment algorithms is supported. For example,
“RSA_CRYPT_ALGORITHM=0x00000002” indicates that RSAES_OAEP is supported.
The support level is defined as a combination of the following flags:

Value Meaning
WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 AES_PKCS_V1_5 algorithm

supported
WFS_PIN_CRYPT_RSAES_OAEP AES_OAEP algorithm supported

- RSA_KEY_CHECK_MODE=<0xnnnnnnnn>, where nnnnnnnn is the ASCII representation
of a hexadecimal value. RSA_KEY_CHECK_MODE will specify what type of key check
value can be returned from a RSA key import function. For example,
“RSA_KEY_CHECK_MODE=0x00000001” indicates that SHA1 is supported. The
support level is defined as a combination of the following flags:

Value Meaning
WFS_PIN_RSA_KCV_SHA1 The key check value contains a SHA 1

of the public key as defined in Ref. 3.

- SIGNATURE_CAPABILITIES=<0xnnnnnnnn>, where nnnnnnnn is the ASCII
representation of a hexadecimal value. SIGNATURE_CAPABILITIES will specify which
capabilities are supported by the Signature scheme. The signature capabilities are defined
as a combination of the following flags:

Value Meaning
WFS_PIN_SIG_GEN_RSA_KEY_PAIR Specifies if the Service Provider supports

the RSA Signature Scheme
WFS_CMD_PIN_GENERATE_RSA_KEY
_PAIR and
WFS_CMD_PIN_EXPORT_RSA_EPP_SI
GNED commands.

WFS_PIN_SIG_RANDOM_NUMBERSpecifies if the Service Provider returns a
random number from the
WFS_CMD_PIN_START_KEY_EXCHAN

CWA 14050-27:2003 (E)

33

GE command within the RSA Signature
Scheme.

WFS_PIN_SIG_EXPORT_EPP_ID Specifies if the Service Provider supports
exporting the EPP Security Item within the
RSA Signature Scheme.

For EMV support the following key/value pairs indicate the level of support of the service
provider. Note that a series of this key/value pairs may occur that lists all import schemes
supported by the PIN SP. If these pairs are not returned then this indicates that the SP does not
support the corresponding feature.

 -EMV_IMPORT_SCHEME=<0xnnnn>, this field will specify to the user how the
specified key will be imported. nnnn is the ASCII representation of a single
hexadecimal value which defines the import scheme. A series of these pairs may be
returned to support multiple import schemes.

The specific values that are used for nnnn are defined within the ‘C’ include file see
section “Changes to C - Header File”. The following descriptions use the ‘C’ constant
name.

Value Meaning
WFS_PIN_EMV_IMPORT_PLAIN_CA A plain text CA public key is imported

with no verification.
WFS_PIN_EMV_IMPORT_CHKSUM_CA A plain text CA public key is imported

using the EMV 2000 verification
algorithm. See reference 4.

WFS_PIN_EMV_IMPORT_EPI_CA A CA public key is imported using the
self-sign scheme defined in the Europay
International, EPI CA Module
Technical – Interface specification
Version 1.4, reference 5

WFS_PIN_EMV_IMPORT_ISSUER An Issuer public key is imported as
defined in EMV 2000 Book II,
reference 4.

WFS_PIN_EMV_IMPORT_ICC An ICC public key is imported as
defined in EMV 2000 Book II,
reference 4.

WFS_PIN_EMV_IMPORT_ICC_PIN An ICC PIN public key is imported as
defined in EMV 2000 Book II,
reference 4.

WFS_PIN_EMV_IMPORT_PKCSV1_5_CA A CA public key is imported and
verified using a signature generated
with a private key for which the public
key is already loaded.

-EMV_HASH=<0xnnnn>, this field will specify to the user which type of Hash Algorithm
is supported by the service provider. nnnn is the ASCII representation of the
combination of hash algorithms supported by the service provider.

Value Meaning
WFS_PIN_HASH_SHA1_DIGEST The SHA 1 digest algorithm is

supported by the
WFS_CMD_PIN_DIGEST command.

The capabilities associated with key loading in multiple part are defined by the following:

PIN_IMPORT_KEY_PARTS=<0/1> (0 means the device does not support key import in
multiple parts, 1 means the device supports key import in multiple parts)

CWA 14050-27:2003 (E)

34

A Service Provider that supports the WFS_CMD_PIN_ENCIO command, shall add information
about what protocols it supports as:

- ENCIOPROTOCOLS=0xnnnn

where nnnn is the ASCII representation of the combination of the values supported for the
wProtocol parameter.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications that require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

6.3. WFS_INF_PIN_KEY_DETAIL

Description This command returns detailed information about the keys in the encryption module. This
command will also return information on symmetric keys loaded during manufacture that can be
used by applications. If a public or private key name is specifed this command will return
WFS_ERR_PIN_KEYNOTFOUND. If the application wants all keys returned, then all keys
except the public or private keys are returned.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAIL * lppKeyDetail;

Pointer to a null-terminated array of pointers to key detail structures.

typedef struct _wfs_pin_key_detail
{
LPSTR lpsKeyName;
WORD fwUse;
BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

lpsKeyName
Specifies the name of the key.

fwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USECONSTRUCT key is under construction through the import of

multiple parts.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

CWA 14050-27:2003 (E)

35

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments None.

6.4. WFS_INF_PIN_KEY_DETAIL_EX

Description This command returns extended detailed information about the keys in the encryption module,
including DES, private and public keys. Information like generation, version, activating and
expiry date can be returned only for keys which are loaded via the
WFS_CMD_PIN_SECURE_MSG_SEND command with WFS_PIN_PROTISOPS or a vendor
dependant mechanism. This command will also return information on all keys loaded during
manufacture that can be used by applications.

Input Param LPSTR lpsKeyName;

lpsKeyName
Name of the key for which detailed information is requested.
If NULL, detailed information about all the keys in the encryption module is returned.

Output Param LPWFSPINKEYDETAILEX * lppKeyDetailEx;

Pointer to a null-terminated array of pointers to key detail structures.

typedef struct _wfs_pin_key_detail_ex
{
LPSTR lpsKeyName;
DWORD dwUse;
BYTE bGeneration;
BYTE bVersion;
BYTE bActivatingDate[4];
BYTE bExpiryDate[4];
BOOL bLoaded;
} WFSPINKEYDETAILEX, * LPWFSPINKEYDETAILEX;

lpsKeyName
Specifies the name of the key.

dwUse
Specifies the type of access for which the key is used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption

including EMV PIN block creation
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA decryption.
WFS_PIN_USERSAPRIVATESIGN key is used as a private key for RSA Signature

generation. Only data generated within the device can
be signed.

WFS_PIN_USECHIPINFO key is used as KGKINFO key (only ZKA standard)
WFS_PIN_USECHIPPIN key is used as KGKPIN key (only ZKA standard)
WFS_PIN_USECHIPPS key is used as KPS key (only ZKA standard)
WFS_PIN_USECHIPMAC key is used as KMAC key (only ZKA standard)
WFS_PIN_USECHIPLT key is used as KGKLT key (only ZKA standard)
WFS_PIN_USECHIPMACLZ key is used as KPACMAC key (only ZKA standard)
WFS_PIN_USECHIPMACAZ key is used as KMASTER key (only ZKA standard)

CWA 14050-27:2003 (E)

36

WFS_PIN_USERSAPUBLICVERIFY key is used as a public key for RSA signature
verification and/or data decryption.

WFS_PIN_USECONSTRUCT key is under construction through the import of
multiple parts. This value can be returned in
combination with any one of the other key usage flags

bGeneration
Specifies the generation of the key as BCD value. Will be 0xff if no such information is
available for the key.

bVersion
Specifies the version of the key as BCD value. Will be 0xff if no such information is available
for the key.

bActivatingDate
Specifies the date when the key is activated as BCD value in the format YYYYMMDD. Will be
0xffffffff if no such information is available for the key.

bExpiryDate
Specifies the date when the key expires as BCD value in the format YYYYMMDD. Will be
0xffffffff if no such information is available for the key.

bLoaded
Specifies whether the key has been loaded (imported from Application or locally from
Operator) and is either TRUE or FALSE.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.

Comments . When the PIN contains a public/private key-pair, only the private part of the key will be
reported. Every private key in the PIN will always have a corresponding public key with the same
name. The public key can be exported with WFS_CMD_PIN_EXPORT_EPP_SIGNED_ITEM.

CWA 14050-27:2003 (E)

37

7. New Execute Commands

7.1. WFS_CMD_PIN_HSM_INIT

Description This command is used to set an HSM out of order. At the same time the online time can be set to
control when the OPT online dialog (see Protocol WFS_PIN_PROTISOPS) shall be started to
initialize the HSM again. When this time is reached a WFS_SRVE_PIN_OPT_REQUIRED event
will be sent.

Input Param LPWFSPINHSMINIT lpHsmInit;

typedef struct _ wfs_pin_hsm_init
{
WORD wInitMode;
LPWFSXDATA lpxOnlineTime;
} WFSPINHSMINIT, * LPWFSPINHSMINIT

wInitMode
Specifies the init mode as one of the following flags:

Value Meaning
WFS_PIN_INITTEMP Initialize the HSM temporarily (K_UR remains

loaded)
WFS_PIN_INITDEFINITE Initialize the HSM definitely (K_UR is deleted)
WFS_PIN_INITIRREVERSIBLE Initialize the HSM irreversibly (can only be restored

by the vendor)
lpxOnlineTime
Specifies the Online date and time in the format YYYYMMDDHHMMSS like in ISO BMP 61
as BCD packed characters. This parameter is ignored when the init mode equals
WFS_PIN_INITDEFINITE or WFS_PIN_INITIRREVERSIBLE. If this parameter is NULL,
ulLength is zero or the value is 0x00 0x00 0x00 0x00 0x00 0x00 0x00 the online time will be
set to a value in the past.

Output Param None.

Error Codes The following additional error codes can be generated by this command:
Value Meaning
WFS_ERR_PIN_MODENOTSUPPORTED The specified init mode is not supported.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

CWA 14050-27:2003 (E)

38

7.2. Common commands for Remote Key Loading Schemes

This section describes those commands that are common between the two Remote Key Loading Schemes. The
commands defined within this section can be used for both the Remote Key Loading Scheme using Signatures and
the Remote Key Loading Scheme using Certificates. Section 3.1 provides additional explanation on how these
commands are used.

7.2.1 WFS_CMD_PIN_START_KEY_EXCHANGE

Description This command is used to start the transfer of the host's Key Transport Key.

This output value is returned to the host and is used in the
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY commands to verify that the encryptor is
talking to the proper host.

The WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY commands end the key exchange
process.

Input Param None

Output Param LPWFSPINSTARTKEYEXCHANGE lpStartKeyExchange;

typedef struct _ wfs_pin_start_key_exchange
{
LPWFSXDATA lpxRandomItem;
} WFSPINSTARTKEYEXCHANGE, * LPWFSPINSTARTKEYEXCHANGE;

lpxRandomItem
Pointer to a randomly generated number created by the encryptor, which will be used to verify the
Key Transport message sent from the host. If the PIN device does not support random number
generation and verification, a zero length random number is returned and a NULL lpbData pointer
is returned.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.

Events None.

Comments None.

CWA 14050-27:2003 (E)

39

7.3. Remote Key Loading Using Signatures

This section contains commands that are used for Remote Key Loading with Signatures. Applications wishing to
use such functionality must use these commands. Section 3.2 provides additional explanation on how these
commands are used. Section 0 defines the fixed names for the Security Item and RSA keys that must be loaded
during manufacture.

7.3.1 WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY

Description The Public RSA key passed by the application is loaded in the encryption module. The dwUse
parameter restricts the cryptographic functions that the imported key can be used for.

This command provides similar public key import functionality to that provided with
WFS_CMD_PIN_IMPORT_KEY_EX. The primary advantage gained through using this function
is that the imported key can be verified as having come from a trusted source. If a Signature
algorithm is specified that is not supported by the PIN SP, then the request will not be accepted
and the command fails.

Input Param LPWFSPINIMPORTRSAPUBLICKEY lpImportRSAPublicKey;

typedef struct _wfs_pin_import_rsa_public_key
{
LPSTR lpsKey;
LPWFSXDATA lpxValue;
DWORD dwUse;
LPSTR lpsSigKey;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSAPUBLICKEY, * LPWFSPINIMPORTRSAPUBLICKEY;

lpsKey
Specifies the name of key being loaded

lpxValue
Contains the PKCS #1 formatted RSA Public Key to be loaded, represented in DER encoded
ASN.1.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key is
deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA

Encryption including EMV PIN block
creation

WFS_PIN_USERSAPUBLICVERIFY key is used as a public key for RSA
signature verification and/or data
decryption.

If dwUse equals zero the specified key is deleted. In that case, all parameters but lpsKey are
ignored. WFS_CMD_PIN_IMPORT_KEY, WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY can be used to delete a key that has been
imported with this command. The equivalent commands in the certificate scheme must not be used
to delete a key imported through the signature scheme.

lpsSigKey
lpsSigKey specifies the name of a previously loaded asymmetric key (i.e. an RSA Public Key)
which will be used to verify the signature passed in lpxSignature. The default Signature Issuer

CWA 14050-27:2003 (E)

40

public key (installed in a secure environment during manufacture) will be used, if lpsSigKey is
either NULL or contains the name of the default Signature issuer as defined in section 0.

dwRSASignatureAlgorithm
Defines the algorithm used to generate the Signature specified in lpxSignature. Contains one of
the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm specified. No

signature verification will take place and the
contents of lpsSigKey and lpxSignature are
ignored.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5 algorithm.
WFS_PIN_SIGN_RSASSA_PSS Use the RSASSA-PSS algorithm.

lpxSignature
Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. Contains NULL when no key validation is
required.

Output Param LPWFSPINIMPORTRSAPUBLICKEYOUTPUT lpImportRSAPublicKeyOutput;

typedef struct _wfs_pin_import_rsa_public_key_output

{
DWORD dwRSAKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT, * LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

dwRSAKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check
value can be used to verify that the public key has been imported correctly. It can be can be one of
the following flags:

Value Meaning
WFS_PIN_RSA_KCV_NONE No check value is returned in lpxKeyCheckValue.
WFS_PIN_RSA_KCV_SHA1 lpxKeyCheckValue contains a SHA-1 digest of the
public key

lpxKeyCheckValue
Contains the public key check value as defined by the dwRSAKeyCheckMode flag.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOTFOUND The key name supplied in lpsSigKey was not

found.
WFS_ERR_PIN_USEVIOLATION An invalid use was specified for the key being

imported.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.
WFS_ERR_PIN_SIG_NOT_SUPP The SP does not support the Signature Algorithm

requested. The key was discarded
WFS_ERR_PIN_SIGNATUREINVALID The imported key failed its signature verification.

It is not stored in the PIN.

CWA 14050-27:2003 (E)

41

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
Comments None.

7.3.2 WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM

Description This command is used to export data elements from the PIN device, which have been signed by an
offline Signature Issuer. This command is used when the default keys and Signature Issuer
signatures, installed during manufacture, are to be used for remote key loading.

This command allows the following data items are to be exported:

• The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained from
this device.

• The RSA Public key component of a public/private key pair that exists within the PIN device.
These public/private key pairs are installed during manufacture Typically, an exported public
key is used by the host to encipher the symmetric key.

See section 0 (Default Keys and Security Item loaded during manufacture) for the default names
and the description of the keys installed during manufacture. These names are defined to ensure
multi-vendor applications can be developed.

The WFS_INF_PIN_KEY_DETAIL_EX command can be used to determine the valid uses for
the exported public key.

Input Param LPWFSPINEXPORTRSAISSUERSIGNEDITEM lpExportRSAIssuerSignedItem;

typedef struct _wfs_pin_export_rsa_issuer_signed_item
{
WORD wExportItemType;
LPSTR lpsName;
} WFSPINEXPORTRSAISSUERSIGNEDITEM, *

LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

wExportItemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:

Value Meaning
WFS_PIN_EXPORT_EPP_ID The Unique ID for the PIN will be exported, lpsName

is ignored.
WFS_PIN_EXPORT_PUBLIC_KEY The public key identified by lpsName will be

exported.

lpsName
Specifies the name of the public key to be exported. The private/public key pair was installed
during manufacture, see section 0 (Default Keys and Security Item loaded during manufacture) for
a definition of these default keys. If lpsName is NULL, then the default EPP public key that is
used for symmetric key encryption is exported.

Output Param LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT
lpExportRSAIssuerSignedItemOutput;

typedef struct _wfs_pin_export_rsa_issuer_signed_item_output
{
LPWFSXDATA lpxValue;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT, *

LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

CWA 14050-27:2003 (E)

42

lpxValue
If a public key was requested then lpxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then lpxValue
contains the PIN’s Security Item, which may be vendor specific.

dwRSASignatureAlgorithm.
Specifies the algorithm used to generate the Signature returned in lpxSignature. Contains one of
the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm used, no signature

will be provided in lpxSignature, the data
item may still be exported.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 RSASSA-PKCS1-v1.5 algorithm used.
WFS_PIN_SIGN_RSASSA_PSS RSASSA-PSS algorithm used.

lpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when key
Signatures are not supported

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_NORSAKEYPAIR The PIN device does not have a private key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOTFOUND The data item identified by lpsName was not

found.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
Comments None.

7.3.3 WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY

Description This command is used to load a Symmetric Key that is either a single or double DES length key
into the encryptor. The key passed by the application is loaded in the encryption module, the
(optional) signature is used during validation, the key is decrypted using the device’s RSA Private
Key, and is then stored. The loaded key will be discarded at any stage if any of the above fails.

The random number previously obtained from the WFS_CMD_PIN_START_KEY_EXCHANGE
command and sent to the host is included in the signed data. This random number (when present)
is verified during the load process. This command ends the Key Exchange process.

The dwUse parameter restricts the cryptographic functions that the imported key can be used for.

If a Signature algorithm is specified that is not supported by the PIN SP, then the message will not
be decrypted and the command fails.

CWA 14050-27:2003 (E)

43

Input Param LPWFSPINIMPORTRSASIGNEDDESKEY lpImportRSASignedDESKey;

typedef struct _wfs_pin_import_rsa_signed_des_key
{
LPSTR lpsKey;
LPSTR lpsDecryptKey;
DWORD dwRSAEncipherAlgorithm;
LPWFSXDATA lpxValue;
DWORD dwUse;
LPSTR lpsSigKey;
DWORD dwRSASignatureAlgorithm;
LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSASIGNEDDESKEY, * LPWFSPINIMPORTRSASIGNEDDESKEY;

lpsKey
Specifies the name of key being loaded.

lpsDecryptKey
Specifies the name of the RSA private key used to decrypt the symmetric key. See section 0
(Default Keys and Security Item loaded during manufacture) for a description of the fixed name
defined for the default decryption private key. If lpsDecryptKey is NULL then the default
decryption private key is used.

dwRSAEncipherAlgorithm
Specifies the RSA algorithm that is used, along with the private key, to decipher the imported
key. Contains one of the following values:

Value Meaning

WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 Use the RSAAES_PKCS1-v1.5
algorithm.

WFS_PIN_CRYPT_RSAES_OAEP Use the RSAAES_OAEP
algorithm.

lpxValue
Specifies the enciphered value of the key to be loaded. lpxValue contains the concatenation of
the random number (when present) and enciphered key.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key
is deleted. Otherwise, the parameter can be a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key is used for encryption and decryption
WFS_PIN_USEFUNCTION key is used for PIN block creation
WFS_PIN_USEMACING key is used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored. WFS_CMD_PIN_IMPORT_KEY, WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY and
WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY can be used to delete a key that has
been imported with this command. The equivalent commands in the certificate scheme must not
be used to delete a key imported through the signature scheme.

CWA 14050-27:2003 (E)

44

lpsSigKey
If lpsSigKey is NULL then the key signature will not be used for validation & lpxSignature is
ignored. Otherwise lpsSigKey specifies the name of an Asymmetric Key (i.e. an RSA Public
Key) previously loaded which will be used to verify the signature passed in lpxSignature.

dwRSASignatureAlgorithm
Specifies the algorithm used to generate the Signature specified in lpxSignature. Contains one
of the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm specified. No signature

verification will take place and the content of
lpxSignature is ignored.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 Use the RSASSA-PKCS1-v1.5 algorithm.
WFS_PIN_SIGN_RSASSA_PSS Use the RSASSA-PSS algorithm.

lpxSignature
Contains the Signature associated with the key being imported. The Signature is used to validate
the key has been received from a trusted sender. . The signature is generated over the contents
of the lpxValue. The lpxSignature signature contains NULL when no key validation is required.

Output Param LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT lpImportRSASignedDESKeyOutput;

typedef struct _wfs_pin_import_rsa_signed_des_key_output
{

WORD wKeyLength;
WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;

} WFSPINIMPORTRSASIGNEDDESKEYOUTPUT, *
LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:

Value Meaning
WFS_PIN_KEYSINGLE The imported key is single length.
WFS_PIN_KEYDOUBLE The imported key is double length.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value provided.
WFS_PIN_KCVSELF The key check value is calculated by an encryption of

the key with itself.
WFS_PIN_KCVZERO The key check value is calculated by an encryption of

a zero value with the key.

lpxKeyCheckValue
pointer to the key verification data that can be used for verification of the loaded key, NULL if
device does not have that capability.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOTFOUND One of the keys specified were not found.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.

CWA 14050-27:2003 (E)

45

WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key
of the specified type.

WFS_ERR_PIN_SIG_NOT_SUPP The SP does not support the Signature Algorithm
requested. The key was discarded.

WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid. The key
is not stored in the PIN.

WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input data
does not match the one previously provided by
the EPP. The key is not stored in the PIN.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

7.3.4 WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR

Description This command will generate a new RSA key pair. The public key generated as a result of this
command can subsequently be obtained by calling
WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM

The newly generated key pair can only be used for the use defined in the dwUse flag. This flag
defines the use of the private key, it’s public key can only be used for the inverse function.

Input Param LPWFSPINGENERATERSAKEYPAIR lpGenerateRSAKeyPair;

typedef struct _wfs_pin_generate_rsa_key
{
LPSTR lpsKey;
DWORD dwUse;
WORD wModulusLength;
WORD wExponentValue;
} WFSPINGENERATERSAKEYPAIR, * LPWFSPINGENERATERSAKEYPAIR;

lpsKey
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be
obtained through the WFS_INF_PIN_KEY_DETAIL_EX command.

dwUse
Specifies what the private key component of the key pair can be used for. The public key part
can only be used for the inverse function. For example, if the WFS_PIN_USERSAPRIVATESIGN
use is specified, then the private key can only be used for signature generation and the partner
public key can only be used for verification. dwUse can take one of the following values:

CWA 14050-27:2003 (E)

46

Value Meaning
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA decryption
WFS_PIN_USERSAPRIVATESIGN key is used as a private key for RSA Signature

generation. Only data generated within the device can
be signed.

wModulusLength
Specifies the number of bits for the modulus of the RSA key pair to be generated. When zero is
specified then the PIN device will be responsible for defining the length:

wExponentValue
Specifies the value of the exponent of the RSA key pair to be generated. The following defines
valid values the exponent:

Value Meaning
WFS_PIN_DEFAULT The device will decide the exponent.
WFS_PIN_EXPONENT_1 Exponent of 21+1 (3)
WFS_PIN_EXPONENT_4 Exponent of 24+1 (17)
WFS_PIN_EXPONENT_16 Exponent of 216+1 (65537)

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not

initialized or not ready for any vendor
specific reason.

WFS_ERR_PIN_INVALID_MOD_LEN The modulus length specified is invalid
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this

key.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEY_GENERATION_ERROR The EPP is unable to generate a key pair

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

CWA 14050-27:2003 (E)

47

7.3.5 WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM

Description This command is used to export data elements from the PIN device that have been signed by a
private key within the EPP. This command is used in place of the
WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM command, when a private key
generated within the PIN device is to be used to generate the signature for the data item. This
command allows an application to define which of the following data items are to be exported:

• The Security Item which uniquely identifies the PIN device. This value may be used to
uniquely identify a PIN device and therefore confer trust upon any key or data obtained from
this device.

• The RSA Public key component of a public/private key pair that exists within the PIN device.

See 0 (Default Keys and Security Item loaded during manufacture) for the default names and the
description of the keys installed during manufacture. These names are defined to ensure multi-
vendor applications can be developed.

The public/private key pairs exported by this command are either installed during manufacture or
generated through the WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR command.

The WFS_INF_PIN_KEY_DETAIL_EX command can be used to determine the valid uses for
the exported public key.

Input Param LPWFSPINEXPORTRSAEPPSIGNEDITEM lpExportRSAEPPSignedItem;

typedef struct _wfs_pin_export_rsa_epp_signed_item
{
WORD wExportItemType;
LPSTR lpsName;
LPSTR lpsSigKey;
DWORD dwSignatureAlgorithm;
} WFSPINEXPORTRSAEPPSIGNEDITEM, * LPWFSPINEXPORTRSAEPPSIGNEDITEM

wExportItemType
Defines the type of data item to be exported from the PIN. Contains one of the following values:

Value Meaning
WFS_PIN_EXPORT_EPP_ID The Unique ID for the PIN will be exported, lpsName
is ignored.
WFS_PIN_EXPORT_PUBLIC_KEY The public key identified by lpsName will be
exported.

lpsName
Specifies the name of the public key to be exported. This can either be the name of a key-pair
generated through WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR or the name of one of the
default key-pairs installed during manufacture.

lpsSigKey
Specifies the name of the private key to use to sign the exported item.

dwSignatureAlgorithm.
Specifies the algorithm to use to generate the Signature returned in both lpxSelfSignature and
lpxSignature. Contains one of the following values:

Value Meaning
WFS_PIN_SIGN_NA No signature algorithm used, no signature

will be provided in lpxSelfSignature or
lpxSignature, the requested item may still be
exported.

WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 RSASSA-PKCS1-v1.5 algorithm used.
WFS_PIN_SIGN_RSASSA_PSS RSASSA-PSS algorithm used.

CWA 14050-27:2003 (E)

48

Output Param LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT lpExportRSAEPPSignedItemOutput;

typedef struct _wfs_pin_export_rsa_epp_signed_item_output
{
LPWFSXDATA lpxValue;
LPWFSXDATA lpxSelfSignature;
LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT, *

LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

lpxValue
If a public key was requested then lpxValue contains the PKCS #1 formatted RSA Public Key
represented in DER encoded ASN.1 format. If the security item was requested then lpxValue
contains the PIN’s Security Item, which may be vendor specific.

lpxSelfSignature
If a public key was requested then lpxSelfSignature contains the RSA signature of the public
key exported, generated with the key-pair’s private component. NULL can be returned when
key Self-Signatures are not supported/required.

lpxSignature
Specifies the RSA signature of the data item exported. NULL can be returned when signatures
are not supported/required.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_NORSAKEYPAIR The PIN device does not have a private key.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOTFOUND The data item idenified by lpsName was not

found.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.
Comments None.

7.4. Remote Key Loading with Certificates

This section contains commands that are used for Remote Key Loading with Certificates. Applications wishing to
use such functionality must use these commands.

CWA 14050-27:2003 (E)

49

7.4.1 WFS_CMD_PIN_LOAD_CERTIFICATE

Description This command is used to load a host certificate or to load a new encryptor certificate from a
Certificate Authority to make remote key loading possible. This command can be called only
once if there are no plans for a new CA to take over the duties. If a new CA does take over the
duties, then this command should be called after the WFS_CMD_REPLACE_CERTIFICATE
command. The type of certificate (Primary or Secondary) to be loaded will be embedded within
the actual certificate structure.

Input Param LPWFSPINLOADCERTIFICATE lpLoadCertificate;

typedef struct _wfs_pin_load_certificate
{
LPWFSXDATA lpxLoadCertificate;
} WFSPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE

lpxLoadCertificate
Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 using the
degenerate certificate only case of the signed-data content type in which the inner content’s data
file is omitted and there are no signers.

Output Param LPWFSPINLOADCERTIFICATEOUTPUT lpLoadCertificateOutput;

typedef struct _wfs_pin_load_certificate_output
{
LPWFSXDATA lpxCertificateData;
} WFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

lpxCertificateData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which the

request is invalid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS_SRVE_PIN_CERTIFICATE_CHANGE The certificate module state has changed.

Comments None.

CWA 14050-27:2003 (E)

50

7.4.2 WFS_CMD_PIN_GET_CERTIFICATE

Description This command is used to read out the encryptor’s certificate, which has been signed by the trusted
Certificate Authority and is sent to the host. This command only needs to be called once if no new
Certificate Authority has taken over. The output of this command will specify in the PKCS #7
message the resulting Primary or Secondary certificate.

Input Param LPWFSPINGETCERTIFICATE lpGetCertificate;

typedef struct _wfs_pin_get_certificate
{
WORD wGetCertificate;
} WFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

wGetCertificate
 Specifies which public key certificate is requested. If the WFS_INF_PIN_STATUS command

indicates Primary Certificates are accepted, then the Primary Public Encryption Key or the
Primary Public Verification Key will be read out. If the WFS_INF_PIN_STATUS command
indicates Secondary Certificates are accepted, then the Secondary Public Encryption Key or the
Secondary Public Verification Key will be read out.

Value Meaning
WFS_PIN_PUBLICKENCKEY The corresponding encryption key is to be

returned
WFS_PIN_PUBLICVERIFICATIONKEY The corresponding verification key is to be

returned

Output Param LPWFSPINGETCERTIFICATEOUPUT lpGetCertificateOutput;

typedef struct _wfs_pin_get_certificate_output
{
LPWFSXDATA lpxCertificate;
} WFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

lpxCertificate
Pointer to the structure that contains the certificate that is to be loaded represented in DER
encoded ASN.1 notation. This data should be in a binary encoded PKCS #7 using the
degenerate certificate only case of the signed-data content type in which the inner content’s data
file is omitted and there are no signers.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which the

request is invalid.

Events None.

Comments None.

CWA 14050-27:2003 (E)

51

7.4.3 WFS_CMD_PIN_REPLACE_CERTIFICATE

Description This command is used to replace the existing primary or secondary Certificate Authority
certificate already loaded into the encryptor. This operation must be done by an Initial Certificate
Authority or by a Sub-Certificate Authority. These operations will replace either the primary or
secondary Certificate Authority public verification key inside of the encryptor. After this
command is complete, the application should send the WFS_CMD_PIN_LOAD_CERTIFICATE
and WFS_CMD_GET_CERTIFICATE commands to ensure that the new HOST and the
encryptor have all the information required to perform the remote key loading process.

Input Param LPWFSPINREPLACECERTIFICATE lpReplaceCertificate;

typedef struct _wfs_pin_replace_certificate
{
LPWFSXDATA lpxReplaceCertificate;
} WFSPINREPLACECERTIFICATE, * LPWFSPINREPLACECERTIFICATE;

lpxReplaceCertificate
Pointer to the PKCS # 7 message that will replace the current Certificate Authority. The outer
content uses the Signed-data content type, the inner content is a degenerate certificate only
content containing the new CA certificate and Inner Signed Data type The certificate should be
in a format represented in DER encoded ASN.1 notation.

Output Param LPWFSPINREPLACECERTIFICATEOUTPUT lpReplaceCertificateOuput

typedef struct _wfs_pin_replace_certificate_output
{
LPWFSXDATA lpxReplaceCertificate;
} WFSPINREPLACECERTIFICATE,* LPWFSPINREPLACECERTIFICATE

lpxNewCertificateData
Pointer to a PKCS #7 structure using a Digested-data content type. The digest parameter should
contain the thumb print value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_INVALIDCERTSTATE The certificate module is in a state in which the

request is invalid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_CERTIFICATE_CHANGE The certificate module state has changed.

Comments None.

CWA 14050-27:2003 (E)

52

7.4.4 WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY

Description This command is used to load a Key Transport Key that is either a single or double DES length
key into the encryptor. The Key Transport Key should be destroyed if the entire process is not
completed. In addition, a new Key Transport Key should be generated each time this protocol is
executed. This method ends the Key Exchange process.

Input Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY lpImportRSAEncipheredPKCS7Key;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key
{
LPWFSXDATA lpxImportRSAKeyIn;
LPSTR lpsKey;
DWORD dwUse;
}WFSPINIMPORTRSAENCIPHEREDPKCS7KEY,

*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY;

lpxImportRSKeyIn
Pointer to a binary encoded PKCS #7 represented in DER encoded ASN.1 notation. This
allows the Host to verify that key was imported correctly and to the correct encryptor The
message has an outer Signed-data content type with the SignerInfo encryptedDigest field
containing the HOST’s signature. The random numbers are included as authenticatedAttributes
within the SignerInfo. The inner content is an Enveloped-data content type. The ATM identifier
is included as the issuerAndSerialNumber within the RecipientInfo. The enciphered KTK is
included within RecipientInfo. The encryptedContent is omitted.

lpsKey
Specifies the name of the key to be stored.

dwUse
Specifies the type of access for which the key can be used as a combination of the following flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored. . WFS_CMD_PIN_IMPORT_KEY, WFS_CMD_PIN_IMPORT_KEY_EX,
WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY
can be used to delete a key that has been imported with this command. The equivalent
commands in the signature scheme must not be used to delete a key imported through the
certificate scheme.

Output Param LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT lpImportRSAEncipheredKeyOut;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key_output
 {

WORD wKeyLength;
 LPWFSXDATA lpxRSAData;
}WFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT,
*LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEYOUTPUT;

wKeyLength
Specifies the length of the key loaded. It can be one of the following flags:

CWA 14050-27:2003 (E)

53

Value Meaning
WFS_PIN_KEYSINGLE The imported key is single length.
WFS_PIN_KEYDOUBLE The imported key is double length.

lpxRSAData
Pointer to a binary encoded PKCS #7, represented in DER encoded ASN.1 notation. The
message has an outer Signed-data content type with the SignerInfo encryptedDigest field
containing the ATM’s signature. The random numbers are included as authenticatedAttributes
within the SignerInfo. The inner content is a data content type, which contains the HOST
identifier as an issuerAndSerialNumber sequence.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key of

the specified type.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_USEVIOLATION The specified use conflicts with a previously for

the same key specified one.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption
key.

Comments None

7.5. EMV

This section defines the commands needed to import the EMV RSA keys provided either by a Certification
Authority (for example VISA or MASTERCARD EUROPE) or by the chip card itself (ISSUER KEY, ICC KEY
and ICC PIN KEY).

7.5.1 WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY

Description The Certification Authority and the Chip Card RSA public keys needed for EMV are loaded or
deleted in/from the encryption module. This command is similar to the
WFS_CMD_PIN_IMPORT_KEY_EX command, but it is specifically designed to address the key
formats and security features defined by EMV. Mainly the extensive use of “signed certificate” or
“EMV certificate” (which is a compromise between signature and a pure certificate) to provide the
public key is taken in account. The service provider is responsible for all EMV public key import
validation. Once loaded, the service provider is not responsible for key/certificate expiry, this is an
application responsibility.

CWA 14050-27:2003 (E)

54

Input Param LPWFSPINEMVIMPORTPUBLICKEY lpEMVImportPublicKey;

typedef struct _wfs_pin_emv_import_public_key
{
LPSTR lpsKey;
DWORD dwUse;
WORD wImportScheme;
LPWFSXDATA lpxImportData;
LPSTR lpsSigKey;
} WFSPINEMVIMPORTPUBLICKEY, * LPWFSPINEMVIMPORTPUBLICKEY;

lpsKey
Specifies the name of key being loaded.

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key
is deleted. Otherwise the parameter can be one of the following flags:
Value Meaning

WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption
including EMV PIN block creation

WFS_PIN_USERSAPUBLICVERIFY key is used as a public key for RSA signature
verification and/or data decryption.

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey
areignored.

wImportScheme
Defines the import scheme used. Contains one of the following values:

Value Meaning
WFS_PIN_EMV_IMPORT_PLAIN_CA This scheme is used by VISA. A plain text CA

public key is imported with no verification. The
two parts of the key (modulus and exponent)
are passed in clear mode as a DER encoded
PKCS#1 public key. The key is loaded directly
in the security module

WFS_PIN_EMV_IMPORT_CHKSUM_CA This scheme is used by VISA. A plain text CA
public key is imported using the EMV 2000
Book II verification algorithm and it is verified
before being loaded in the security module.
(See [Ref. 4] under references section for this
document)

WFS_PIN_EMV_IMPORT_EPI_CA This scheme is used by Mastercard Europe. A
CA public key is imported using the self-signed
scheme defined in [Ref. 5].

WFS_PIN_EMV_IMPORT_ISSUER An Issuer public key is imported as defined in
EMV 2000 Book II, reference 4. (See [Ref. 4]
under references section for this document)

WFS_PIN_EMV_IMPORT_ICC An ICC public key is imported as defined in
EMV 2000 Book II, reference 4. (See [Ref. 4]
under references section for this document)

WFS_PIN_EMV_IMPORT_ICC_PIN An ICC PIN public key is imported as defined
in EMV 2000 Book II, reference 4. (See [Ref.
4] under references section for this document)

WFS_PIN_EMV_IMPORT_PKCSV1_5_CA A CA public key is imported and verified using
a signature generated with a private key for
which the public key is already loaded.

lpxImportData
The lpxImportData parameter contains all the necessary data to complete the import using the
scheme specified within wImportScheme.

If wImportScheme is WFS_PIN_EMV_IMPORT_PLAIN_CA then lpxImportData contains a

CWA 14050-27:2003 (E)

55

DER encoded PKCS#1 public key. No verification is possible. lpsSigKey is ignored.

If wImportScheme is WFS_PIN_EMV_IMPORT_CHKSUM_CA then lpxImportData contains
table 23 data, as specified in EMV 2000 Book 2 (See Ref. [4] under the reference section for
this document). The plain text key is verified as defined within EMV 2000 Book 2, page 73.
lpsSigKey is ignored (See Ref. [4] under the reference section for this document).

If wImportScheme is WFS_PIN_EMV_IMPORT_EPI_CA then lpxImportData contains the
concatenation of tables 4 and 13, as specified in reference 5, Europay International, EPI CA
Module Technical – Interface specification Version 1.4. These tables are also described in the
EMV Support Appendix. The self-signed public key is verified as defined by the reference
document. lpsSigKey is ignored.

If wImportScheme is WFS_PIN_EMV_IMPORT_ISSUER then lpxImportData contains the
EMV public key certificate. Within the following descriptions tags are documented to indicate
the source of the data, but they are not sent down to the Service Provider. The data consists of
the concatenation of : the key exponent length (1 byte), the key exponent value (variable length
– EMV Tag value : ‘9F32’), the EMV certificate length (1 byte), the EMV certificate value
(variable length – EMV Tag value : ‘90’) , the remainder length (1 byte). The remainder value
(variable length – EMV Tag value : ‘92’), the PAN length (1 byte) and the PAN value (variable
length – EMV Tag value : ‘5A’). The service provider will compare the leftmost three-eight
digits of the PAN to the Issuer Identification Number retrieved from the certificate. For more
explanations, the reader can refer to EMVco, Book2 – Security & Key Management Version
4.0, Table 4. lpsSigKey defines the previously loaded key used to verify the signature.

If wImportScheme is WFS_PIN_EMV_IMPORT_ICC then lpxImportData contains the EMV
public key certificate. Within the following descriptions tags are documented to indicate the
source of the data, but they are not sent down to the Service Provider. The data consists of the
concatenation of : the key exponent length (1 byte), the key exponent value (variable length–
EMV Tag value : ‘9F47’), the EMV certificate length (1 byte), the EMV certificate value
(variable length – EMV Tag value :’9F46’), the remainder length (1 byte), the remainder value
(variable length – EMV Tag value : ‘9F48’), the SDA length (1 byte), the SDA value (variable
length), the PAN length (1 byte) and the PAN value (variable length – EMV Tag value : ‘5A’),.
The service provider will compare the PAN to the PAN retrieved from the certificate. For more
explanations, the reader can refer to EMVco, Book2 – Security & Key Management Version
4.0, Table 9. lpsSigKey defines the previously loaded key used to verify the signature.

If wImportScheme is WFS_PIN_EMV_IMPORT_ICC_PIN then lpxImportData contains the
EMV public key certificate. Within the following descriptions tags are documented to indicate
the source of the data, but they are not sent down to the Service Provider. The data consists of
the concatenation of : the key exponent length (1 byte), the key exponent value (variable length
– EMV Tag value : ‘9F2E’), the EMV certificate length (1 byte), the EMV certificate value
(variable length – EMV Tag value :’9F2D’), the remainder length (1 byte), the remainder value
(variable length – EMV Tag value : ‘9F2F’), the SDA length (1 byte), the SDA value (variable
length), the PAN length (1 byte) and the PAN value (variable length – EMV Tag value : ‘5A’),.
The service provider will compare the PAN to the PAN retrieved from the certificate. For more
explanations, the reader can refer to EMVco, Book2 – Security & Key Management Version
4.0, Table 9. lpsSigKey defines the previously loaded key used to verify the signature.

If wImportScheme is WFS_PIN_EMV_IMPORT_PKCSV1_5_CA then lpxImportData
contains the CA public key signed with the previously loaded public key specified in lpsSigKey.
lpxImportData consists of the concatenation of EMV 2000 Book II Table 23(reference 4) + 8
byte random number + Signature (See Ref. [4] under the reference section for this document).
The 8-byte random number is not used for validation; it is used to ensure the signature is unique.
The Signature consists of all the bytes in the lpxImportData buffer after table 23 and the 8-byte
random number.

lpsSigKey
This field specifies the name of the previously loaded key used to verify the signature, as
detailed in the descriptions above.

CWA 14050-27:2003 (E)

56

Output Param LPWFSPINEMVIMPORTPUBLICKEYOUTPUT lpEMVImportPublicKeyOutput;

typedef struct _wfs_pin_emv_import_public_key_output
{
LPSTR lpsExpiryDate;
} WFSPINEMVIMPORTPUBLICKEYOUTPUT, * LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

lpsExpiryDate

Contains the expiry date of the certificate in the following format MMYY. If no expiry date
applies then lpsExpiryDate is NULL.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.
WFS_ERR_PIN_EMV_VERIFY_FAILED The verification of the imported key failed and

the key was discarded.
WFS_ERR_PIN_KEYNOTFOUND The specified key name is not found.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments This command only imports one key per use. If the same key value has to be imported for two
different uses, this command must be called twice and different key names must be specified.

7.5.2 WFS_CMD_PIN_DIGEST

Description: This command is used to compute a hash code on a stream of data using the specified hash
algorithm. This command can be used to verify EMV static and dynamic data.

Input Param LPWFSPINDIGEST lpDigest;

typedef struct _wfs_pin_digest
{
WORD wHashAlgorithm;
LPWFSXDATA lpxDigestInput
} WFSPINDIGEST, * LPWFSPINDIGEST;

wHashAlgorithm
Specifies which hash algorithm should be used to calculate the hash. See the Capabilities section
for valid algorithms.

lpxDigestInput
Pointer to the structure that contains the length and the data to be hashed

CWA 14050-27:2003 (E)

57

Output Param LPWFSPINDIGESTOUPUT lpDigestOutput;

typedef struct _ wfs_pin_digest_output
{
LPWFSXDATA lpxDigestOutput
} WFSPINDIGEST, * LPWFSPINDIGEST;

lpxDigestOuput
Pointer to the structure that contains the length and the data containing the calculated hash.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or not

ready for any vendor specific reason.

Events: None

Comments: None

8. Changes to existing Execute Commands

8.1. WFS_CMD_PIN_CRYPT

Description The input data is either encrypted or decrypted using the specified or selected encryption mode.
The available modes are defined in the WFS_INF_PIN_CAPABILITIES command.

This command can also be used for random number generation.

Furthermore it can be used for Message Authentication Code generation (i.e. MACing). The input
data is padded to the necessary length mandated by the encryption algorithm using the bPadding
parameter. Applications can generate a MAC using an alternative padding method by pre-
formatting the data passed and combining this with the standard padding method.

The input data can be expanded with a fill-character to the necessary length (mandated by the
encryption algorithm being used).

The Start Value (or Initialization Vector) should be able to be passed encrypted like the specified
encryption/decryption key. It would therefore need to be decrypted with a loaded key so the name
of this key must also be passed. However, both these parameters are optional.

Input Param LPWFSPINCRYPT lpCrypt;

typedef struct _wfs_pin_crypt
{
WORD wMode;
LPSTR lpsKey;
LPWFSXDATA lpxKeyEncKey;
WORD wAlgorithm;
LPSTR lpsStartValueKey;
LPWFSXDATA lpxStartValue;
BYTE bPadding;
BYTE bCompression;
LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

CWA 14050-27:2003 (E)

58

wMode
Specifies whether to encrypt or decrypt, values are one of the following:

Value Meaning
WFS_PIN_MODEENCRYPT encrypt with key
WFS_PIN_MODEDECRYPT decrypt with key
WFS_PIN_MODERANDOM an 8 byte random value shall be returned (in this case

all the other input parameters are ignored)

This parameter does not apply to MACing.

lpsKey
Specifies the name of the stored key. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

lpxKeyEncKey
If NULL, lpsKey is used directly for encryption/decryption. Otherwise, lpsKey is used to
decrypt the encrypted key passed in lpxKeyEncKey and the result is used for
encryption/decryption. Key is a double length key when used for Triple DES
encryption/decryption. Users of this specification must adhere to local regulations when using
Triple DES. This value is ignored, if wMode equals WFS_PIN_MODERANDOM.

wAlgorithm
Specifies the encryption algorithm. Possible values are those described in
WFS_INF_PIN_CAPABILITIES. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

lpsStartValueKey
Specifies the name of the stored key used to decrypt the lpxStartValue to obtain the
Initialization Vector. If this parameter is NULL, lpxStartValue is used as the Initialization
Vector. This value is ignored, if wMode equals WFS_PIN_MODERANDOM.

lpxStartValue
DES and Triple DES initialization vector for CBC / CFB encryption and MACing. If this
parameter is NULL lpsStartValueKey is used as the Start Value. If lpsStartValueKey is also
NULL, the default value for CBC / CFB / MAC is 16 hex digits 0x0. This value is ignored, if
wMode equals WFS_PIN_MODERANDOM.

bPadding
Specifies the padding character for encryption. This value is ignored, if wMode equals
WFS_PIN_MODERANDOM.

bCompression
Specifies whether data is to be compressed (blanks removed) before building the MAC. If
bCompression is 0x00 no compression is selected, otherwise bCompression holds the
representation of the blank character in the actual code table. This value is ignored, if wMode
equals WFS_PIN_MODERANDOM.

lpxCryptData
Pointer to the data to be encrypted, decrypted, or MACed. This value is ignored, if wMode
equals WFS_PIN_MODERANDOM.

Output Param LPWFSXDATA lpxCryptData;

lpxCryptData
Pointer to the encrypted or decrypted data, MAC value or 8 byte random value.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found.
WFS_ERR_PIN_MODENOTSUPPORTED The specified mode is not supported.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.

CWA 14050-27:2003 (E)

59

WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxKeyEncKey or lpxStartValue is
not supported.

WFS_ERR_PIN_NOCHIPTRANSACTIVE A chipcard key is used as encryption key and
there is no chip transaction active.

WFS_ERR_PIN_ALGORITHMNOTSUPP The specified algorithm is not supported.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments The data type LPWFSXDATA is used to pass hexadecimal data and is defined as follows:

typedef struct _wfs_hex_data
{
USHORT usLength;
LPBYTE lpbData;
} WFSXDATA, *LPWFSXDATA;

usLength
Length of the byte stream pointed to by lpbData.

lpbData
Pointer to the binary data stream.

8.2. WFS_CMD_PIN_IMPORT_KEY

Description The key passed by the application is loaded in the encryption module. The key can be passed in
clear text mode or encrypted with an accompanying “key encryption key”. A key can be loaded in
multiple unencrypted parts by combining the WFS_PIN_USECONSTRUCT value with the final
usage flags within the fwUse field.

Input Param LPWFSPINIMPORT lpImport;

typedef struct _wfs_pin_import
{
LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxValue;
WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
lpsEncKey specifies a key name or a format name which were used to encrypt the key passed in
lpxValue. If lpsEncKey is NULL the key is loaded directly into the encryption module.
lpsEncKey must be NULL if fwUse contains WFS_PIN_USECONSTRUCT.

lpxIdent
Specifies the key owner identification. The use of this parameter is vendor dependent.

fwUse
Specifies the type of access for which the key can be used as a combination of the following
flags:

Value Meaning
WFS_PIN_USECRYPT key can be used for encryption/decryption
WFS_PIN_USEFUNCTION key can be used for PIN functions
WFS_PIN_USEMACING key can be used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USENODUPLICATE key can be imported only once
WFS_PIN_USESVENCKEY key is used as CBC Start Value encryption key

CWA 14050-27:2003 (E)

60

WFS_PIN_USECONSTRUCT key is under construction through the import of
multiple parts. This value is used in combination with
the actual usage flags for the key.

If fwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

Output Param LPWFSXDATA lpxKVC;

lpxKVC
pointer to the key verification code data that can be used for verification of the loaded key,
NULL if device does not have that capability.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_INVALIDID The ID passed was not valid.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments When keys are loaded in multiple parts, all parts of the key loaded must set the
WFS_PIN_USECONSTRUCT value in the fwUse field along with any usage’s needed for the
final key use. The usage flags must be consistent for all parts of the key. Activation of the key
entered in multiple parts is indicated through an additional final call to this command, where
WFS_USECONSTRUCT is removed from fwUse but those other usage’s defined during the key
part loading must still be used. No key data is passed during the final activation of the key.

The optional KCV is only returned during the final activation step. Applications wishing to verify
the KCV for each key part will need to load each key part into a temporary location inside the
encryptor. If the application determines the KCV of the key part is valid, then the application calls
the WFS_CMD_PIN_IMPORT_KEY again to load the key part into the device. The application
should delete the temporary key part as soon as the KCV for that key part has been verified.

When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a fwUse value that is combined with
WFS_PIN_USECONSTRUCT (i.e. it is still being loaded), it cannot be used for cryptographic
functions.

CWA 14050-27:2003 (E)

61

8.3. WFS_CMD_PIN_GET_PINBLOCK

Description This function takes the account information and a PIN entered by the user to build a formatted
PIN. Encrypting this formatted PIN once or twice returns a PIN block, which can be written on a
magnetic card or sent to a host. The PIN block can be calculated using one of the formats
specified in the WFS_INF_PIN_CAPABILITIES command. This command clears the PIN.

Input Param LPWFSPINBLOCK lpPinBlock;

typedef struct _wfs_pin_block
{
LPSTR lpsCustomerData;
LPSTR lpsXORData;
BYTE bPadding;
WORD wFormat;
LPSTR lpsKey;
LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

lpsCustomerData
Used for ANSI, ISO-0 and ISO-1 algorithm to build the formatted PIN. For ANSI and ISO-0
the PAN (Primary Account Number) is used, for ISO-1 a ten digit transaction field is required.
If not used a NULL is required.
Used for DIEBOLD with coordination number, as a two digit coordination number.

Used for EMV with challenge number (8 bytes) coming from the chip card. This number is
passed as unpacked string, for example: 0123456789ABCDEF = 0x30 0x31 0x32 0x33 0x34
0x35 0x36 0x37 0x38 0x39 0x41 0x42 0x43 0x44 0x45 0x46

lpsXORData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to
modify the result of the first encryption by an XOR-operation.

bPadding
Specifies the padding character.

wFormat
Specifies the format of the PIN block. Possible values are:
(see command WFS_INF_PIN_CAPABILITIES)

lpsKey
Specifies the key used to encrypt the formatted pin for the first time, NULL if no encryption is
required. If this specifies a double length key, triple DES encryption will be performed. If this
specifies an RSA key, RSA encryption will be performed.

lpsKeyEncKey
Specifies the key used to format the once encrypted formatted PIN, NULL if no second
encryption required.

Output Param LPWFSXDATA lpxPinBlock;

lpxPinBlock
Pointer to the encrypted PIN Block.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key was not found
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_KEYNOVALUE The specified key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use is not supported by this key.
WFS_ERR_PIN_NOPIN PIN has been cleared.
WFS_ERR_PIN_FORMATNOTSUPP The specified format is not supported.

CWA 14050-27:2003 (E)

62

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

8.4. WFS_CMD_PIN_INITIALIZATION

Description The encryption module must be initialized before any encryption function can be used. Every call
to WFS_CMD_PIN_INITIALIZATION destroys all application keys that have been loaded or
imported, it does not affect those keys loaded during manufacturing. Usually this command is
called by an operator task and not by the application program.

Initialization also involves loading “initial” application keys and local vendor dependent keys.
These can be supplied, for example, by an operator through a keyboard, a local configuration file,
remote RSA key management or possibly by means of some secure hardware that can be attached
to the device. The application “initial” keys would normally get updated by the application during
a WFS_CMD_PIN_IMPORT_KEY command as soon as possible. Local vendor dependent static
keys (e.g. storage, firmware and offset keys) would normally be transparent to the application and
by definition cannot be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator
intervention is required), the Service Provider returns WFS_ERR_PIN_ACCESS_DENIED and
the application must await the WFS_SRVE_PIN_INITIALIZED event.

During initialization an optional encrypted ID key can be stored in the HW module. The ID key
and the corresponding encryption key can be passed as parameters; if not, they are generated
automatically by the encryption module. The encrypted ID is returned to the application and
serves as authorization for the key import function. The WFS_INF_PIN_CAPABILITIES
command indicates whether or not the device will support this feature.

This function also resets the HSM terminal data, except session key index and trace number.

This function resets all certificate data and authentication public/private keys back to their initial
states at the time of production. Key-pairs created with
WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR are deleted. Any keys installed during
production, which have been permanently replaced, will not be reset. Any Verification certificates
that may have been loaded must be reloaded. The Certificate state will remain the same, but the
WFS_CMD_PIN_LOAD_CERTIFCATE or WFS_CMD_REPLACE_CERTIFICATE commands
must be called again.

Input Param LPWFSPININIT lpInit;

typedef struct _wfs_pin_init
{
LPWFSXDATA lpxIdent;
LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

lpxIdent
Pointer to the value of the ID key. Null if not required.

lpxKey
Pointer to the value of the encryption key. Null if not required.

Output Param LPWFSXDATA lpxIdentification;

lpxIdentification
Pointer to the value of the ID key encrypted by the encryption key. Can be used as authorization
for the WFS_CMD_PIN_IMPORT_KEY command, can be NULL if no authorization required.

CWA 14050-27:2003 (E)

63

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized (or

not ready for some vendor specific reason).
WFS_ERR_PIN_INVALIDID The ID passed was not valid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_INITIALIZED The encryption module is now initialized.
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments None.

8.5. WFS_CMD_PIN_HSM_SET_TDATA

Description This function allows to set the HSM terminal data except keys, trace number and session key
index. The data must be provided as a series of “tag/length/value” items.
Terminal data that are set but are not supported by the hardware will be ignored.

Input Param LPWFSXDATA lpxTData;

lpxTData
Specifies which parameter(s) is(are) to be set. lpxTData is a series of “tag/length/value” items
where each item consists of

- one byte tag (see the list of tags below),
- one byte specifying the length of the following data as an unsigned binary number
- n bytes data (see the list below for formatting)

with no separators.

The following tags are supported:

tag (hexadecimal)Format Length (in bytes) Meaning

C2 BCD 4 Terminal ID
ISO BMP 41

C3 BCD 4 Bank code
ISO BMP 42 (rightmost 4 bytes)

C4 BCD 9 Account data for terminal account
ISO BMP 60 (load against other card)

C5 BCD 9 Account data for fee account
ISO BMP 60 ("Laden vom Kartenkonto")

C6 EBCDIC 40 Terminal location
ISO BMP 43

C7 ASCII 3 Terminal currency
C8 BCD 7 Online date and time

(YYYYMMDDHHMMSS)
ISO BMP 61

C9 BCD 4 Minimum load fee
in units of 1/100 of terminal currency,
checked against leftmost 4 Bytes
of ISO BMP42,

CA BCD 4 Maximum load fee
in units of 1/100 of terminal currency,
checked against leftmost 4 Bytes
of ISO BMP42,

CWA 14050-27:2003 (E)

64

CB BIN 3 logical HSM binary coded serial number
(starts with 1; 0 means that there are no
logical HSMs).

CC EBCDIC 16 ZKA ID (is filled during the pre-initialisation
of the HSM).

CD BIN 1 HSM status
(1 = irreversibly out of order
 2 = out of order, K_UR is not loaded
 3 = not pre-initialized, K_UR is loaded
 4 = pre-initialized, K_INIT is loaded
 5 = initialized/personalized, K_PERS
 is loaded).

CE EBCDIC variable, min. 16 HSM-ID (6 byte Manufacturer- ID + min. 10
Byte serial number), as needed for ISO
BMP57 of a pre-initialisation

The parameters CB, CC, CD and CE cannot be set. They can only be read using the command
WFS_INF_PIN_HSM_TDATA.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

8.6. WFS_CMD_PIN_SECURE_MSG_SEND

Description This command handles all messages that should be send through a secure messaging to a
authorization system, German "Ladezentrale", personalisation system or the chip. The encryption
module adds the security relevant fields to the message and returns the modified message in the
output structure. All messages must be presented to the encryptor via this command even if they
do not contain security fields in order to keep track of the transaction status in the internal state
machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;

typedef struct _wfs_pin_secure_message
{
WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

CWA 14050-27:2003 (E)

65

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization system
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German "Ladezentrale"
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalisation system
WFS_PIN_PROTCHIPZKA ZKA chip protocol
WFS_PIN_PROTRAWDATA raw data protocol
WFS_PIN_PROTPBM PBM protocol (see [Ref. 8] –[Ref. 13])
WFS_PIN_PROTHSMLDI HSM LDI protocol

ulLength
Specifies the length in bytes of the message in lpbMsg. This parameter is ignored for the
WFS_PIN_PROTHSMLDI protocol.

lpbMsg
Specifies the message that should be send. This parameter is ignored for the
WFS_PIN_PROTHSMLDI protocol.

Output Param LPWFSPINSECMSG lpSecMsgOut;

lpSecMsgOut
pointer to a WFSPINSECMSG structure that contains the modified message that can now be
send to a authorization system, German "Ladezentrale", personalisation system or the chip.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

message.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant fields

are invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

8.7. WFS_CMD_PIN_SECURE_MSG_RECEIVE

Description This command handles all messages that are received through a secure messaging from a
authorization system, German "Ladezentrale", personalisation system or the chip. The encryption
module checks the security relevant fields. All messages must be presented to the encryptor via
this command even if they do not contain security relevant fields in order to keep track of the
transaction status in the internal state machine.

Input Param LPWFSPINSECMSG lpSecMsgIn;

typedef struct _wfs_pin_secure_message
{
WORD wProtocol;
ULONG ulLength;
LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

CWA 14050-27:2003 (E)

66

wProtocol
Specifies the protocol the message belongs to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS ISO 8583 protocol for the authorization system
WFS_PIN_PROTISOLZ ISO 8583 protocol for the German "Ladezentrale"
WFS_PIN_PROTISOPS ISO 8583 protocol for the personalisation system
WFS_PIN_PROTCHIPZKA ZKA chip protocol
WFS_PIN_PROTRAWDATA raw data protocol
WFS_PIN_PROTPBM PBM protocol (see [Ref. 8] –[Ref. 13])

ulLength
Specifies the length in bytes of the message in lpbMsg.

lpbMsg
Specifies the message that was received. Can be NULL if during a specified time period no
response was reveived from the communication partner (necessary to set the internal state
machine to the correct state).

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

message.
WFS_ERR_PIN_MACINVALID The MAC of the message is not correct.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.
WFS_ERR_PIN_FORMATINVALID The format of the message is invalid.
WFS_ERR_PIN_CONTENTINVALID The contents of one of the security relevant fields

are invalid.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_HSM_TDATA_CHANGED The terminal data has changed.

Comments None.

8.8. WFS_CMD_PIN_GET_JOURNAL

Description This command is used to get journal data from the encryption module. It retrieves
cryptographically secured information about the result of the last transaction that was done with
the indicated protocol. When the service provider supports journaling (see Capabilities) then it is
impossible to do any WFS_CMD_PIN_SECURE_MSG_SEND/RECEIVE with this protocol,
unless the journal data is retrieved. It is possible - especially after restarting a system - to get the
same journal data again.

Input Param LPWORD lpwProtocol;

lpwProtocol
Specifies the protocol the journal data belong to. Specified as one of the following flags:

Value Meaning
WFS_PIN_PROTISOAS Get authorization system journal data
WFS_PIN_PROTISOLZ Get German "Ladezentrale" journal data
WFS_PIN_PROTISOPS Get personalisation system journal data

CWA 14050-27:2003 (E)

67

WFS_PIN_PROTPBM Get PBM protocol data

Output Param LPWFSXDATA lpxJournalData;

lpxJournalData
Pointer to the journal data

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to return journal

data.
WFS_ERR_PIN_PROTINVALID The specified protocol is invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

8.9. WFS_CMD_PIN_IMPORT_KEY_EX

Description The key passed by the application is loaded in the encryption module. The key can be passed in
clear text mode or encrypted with an accompanying "key encryption key". The dwUse parameter
is needed to separate the keys in several parts of the encryption module to avoid the manipulation
of a key. A key can be loaded in multiple unencrypted parts by combining the
WFS_PIN_USECONSTRUCT value with the final usage flag within the dwUse field.

Input Param LPWFSPINIMPORTKEYEX lpImportKeyEx;

typedef struct _wfs_pin_import_key_ex
{
LPSTR lpsKey;
LPSTR lpsEncKey;
LPWFSXDATA lpxValue;
LPWFSXDATA lpxControlVector;
DWORD dwUse;
WORD wKeyCheckMode;
LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, * LPWFSPINIMPORTKEYEX;

lpsKey
Specifies the name of key being loaded.

lpsEncKey
lpsEncKey specifies a key name which was used to encrypt the key string passed in lpxValue. If
lpsEncKey is NULL the key is loaded directly into the encryption module. lpsEncKey must be
NULL if dwUse contains WFS_PIN_USECONSTRUCT.

lpxValue
Specifies the value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus.

lpxControlVector
Specifies the control vector of the key to be loaded. It contains the attributes of the key. If this
parameter is NULL the keys is only specified by its use.

CWA 14050-27:2003 (E)

68

dwUse
Specifies the type of access for which the key can be used. If this parameter equals zero, the key
is deleted. Otherwise the parameter can be one of the following flags:

Value Meaning
WFS_PIN_USECRYPT key is used for encryption and decryption
WFS_PIN_USEFUNCTION key is used for PIN block creation
WFS_PIN_USEMACING key is used for MACing
WFS_PIN_USEKEYENCKEY key is used as key encryption key
WFS_PIN_USEPINLOCAL key is used for local PIN check
WFS_PIN_USERSAPUBLIC key is used as a public key for RSA encryption

including EMV PIN block creation
WFS_PIN_USERSAPRIVATE key is used as a private key for RSA decryption (it is

not recommend that private keys are imported with
this function).

WFS_PIN_USECONSTRUCT key is under construction through the import of
multiple parts. This value is used in combination with
one of the other key usage flags

If dwUse equals zero the specified key is deleted. In that case all parameters but lpsKey are
ignored.

wKeyCheckMode
Specifies the mode that is used to create the key check value. It can be one of the following
flags:

Value Meaning
WFS_PIN_KCVNONE There is no key check value verification required.
WFS_PIN_KCVSELF The key check value is created by an encryption of the

key with itself.
WFS_PIN_KCVZERO The key check value is created by an encryption of the

key with a zero value.

lpxKeyCheckValue
Specifies a check value to verify that the value of the imported key is correct. It can be NULL,
if no key check value verification is required and wKeyCheckMode equals
WFS_PIN_KCVNONE.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_KEYNOTFOUND The specified key encryption key was not found.
WFS_ERR_PIN_ACCESSDENIED The encryption module is either not initialized or

not ready for any vendor specific reason.
WFS_ERR_PIN_DUPLICATEKEY A key exists with that name and cannot be

overwritten.
WFS_ERR_PIN_KEYNOVALUE The specified key encryption key is not loaded.
WFS_ERR_PIN_USEVIOLATION The specified use conflicts with a previously for

the same key specified one.
WFS_ERR_PIN_INVALIDKEYLENGTH The length of lpxValue is not supported.
WFS_ERR_PIN_KEYINVALID The key value is invalid. The key check value

verification failed.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key

of the specified type.

CWA 14050-27:2003 (E)

69

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS An error occurred accessing an encryption

key.

Comments When keys are loaded in multiple parts, all parts of the key loaded must set the
WFS_PIN_USECONSTRUCT value in the dwUse field along with any usage’s needed for the
final key use. The usage flag must be consistent for all parts of the key. Activation of a key
entered in multiple parts is indicated through an additional final call to this command, where
WFS_USECONSTRUCT is removed from dwUse but those other usage’s defined during the key
part loading must still be used. No key data is passed during the final activation of the key.

When the WFS_PIN_USECONSTRUCT flag is set, the optional KCV applies to the key part
being imported. If the KVC provided for a key part fails verification, the key part will not be
accepted. When the key is being activated, the optional KCV applies to the complete key already
stored. If the KVC provided during activation fails verification, the key will not be activated.

 When the first part of the key is received, it is stored directly in the device. All subsequent parts
are combined with the existing value in the device through XOR. No sub-parts of the key are
maintained separately. While a key still has a dwUse value that is combined with
WFS_PIN_USECONSTRUCT (i.e. it is still being loaded), it cannot be used for cryptographic
functions.

8.10. WFS_CMD_PIN_ENC_IO

Description This command is used to communicate with the encryption module. Transparent data is sent from
the application to the encryption module and the response is returned transparently to the
application.

Input Param LPWFSPINENCIO lpEncIoIn;

typedef struct _wfs_pin_enc_io
{
WORD wProtocol;
ULONG ulDataLength;
LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module.
The following protocol numbers are defined:

Value Meaning
WFS_PIN_ENC_PROT_CH For Swiss specific protocols.

The document specification for Swiss specific
protocols is "CMD_ENC_IO - CH Protocol.doc".
This document is available at the following
address:
EUROPAY (Switzerland) SA
Terminal Management
Hertistrasse 27
CH-8304 Wallisellen

WFS_PIN_ENC_PROT_GIECB Protocol for “Groupement des Cartes Bancaires”
(France)

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a structure containing the data to be sent to the encryption module.

CWA 14050-27:2003 (E)

70

Output Param LPWFSPINENCIO lpEncIoOut;

typedef struct _wfs_pin_enc_io
{
WORD wProtocol;
ULONG ulDataLength;
LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

wProtocol
Identifies the protocol that is used to communicate with the encryption module. This field contains
the same value as the corresponding field in the input structure.

ulDataLength
Specifies the length in bytes of the structure pointed to by the following field lpvData.

lpvData
Points to a structure containing the data responded by the encryption module.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_PIN_PROTOCOLNOTSUPP The specified protocol is not supported by the

service provider.
For wProtocol=WFS_PIN_ENC_PROT_GIECB

WFS_ERR_INVALID_DATA The input data is not valid for the specified
protocol, e.g. inconsistent TLV encoding

WFS_ERR_PIN_RANDOMINVALID The encrypted random number in the input data
does not decrypt to the one previously provided by
the EPP

WFS_ERR_PIN_SIGNATUREINVALID The signature in the input data is invalid
WFS_ERR_PIN_SNSCDINVALID The SCD serial number in the input data is invalid
WFS_ERR_PIN_HSMSTATEINVALID The HSM is not in a correct state to handle this

command.
WFS_ERR_PIN_NOKEYRAM There is no space left in the key RAM for a key of

the specified type.
WFS_ERR_PIN_KEYINVALID The key value is invalid.
WFS_ERR_PIN_KEY_GENERATION_ERROR

The EPP is unable to generate a key pair

Events None.

Comments None.

9. New Events

9.1. WFS_SRVE_PIN_CERTIFICATE_CHANGE

Description This event indicates that the certificate module state has changed from Primary to Secondary.

Event Param LPWORD lpwCertificateChange

 lpwCertificateChange
 Specifies change of the certificate state inside of the encryptor as one of the following:

Value Meaning
WFS_PIN_CERT_SECONDARY The certificate state of the encryptor is now

Secondary and Primary Certificates will no
longer be accepted.

Comments None

CWA 14050-27:2003 (E)

71

9.2. WFS_SRVE_PIN_HSM_TDATA_CHANGED

Description This event indicates that one of the values of the terminal data has changed (these are the data that
can be set using WFS_CMD_PIN_SET_HSM_TDATA). I.e. this event will be sent especially
when the online time or the HSM status is changed because of a WFS_CMD_PIN_HSM_INIT
command or an OPT online dialog (WFS_CMD_PIN_SECURE_MSG_SEND/_RECEIVE with
WFS_PIN_PROTPS).

Event Param LPWFSXDATA lpxTData;

lpxTData
Contains the parameter settings as a series of “tag/length/value” items. See command
WFS_CMD_PIN_HSM_SET_TDATA for the tags supported.

Comments None.

10. Changes to existing Events

None

CWA 14050-27:2003 (E)

72

11. Changes to C - Header File

/**

* *
*xfspin.h XFS - Personal Identification Number Keypad (PIN) definitions *
* *
* Version 3.02 (17/04/03) *
* *
**/

#ifndef __INC_XFSPIN__H
#define __INC_XFSPIN__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSPINCAPS.wClass */

#define WFS_SERVICE_CLASS_PIN (4)
#define WFS_SERVICE_CLASS_VERSION_PIN (0x0203) /* Version 3.02 * (0x0003) /*
Version 3.00 */
#define WFS_SERVICE_CLASS_NAME_PIN "PIN"

#define PIN_SERVICE_OFFSET (WFS_SERVICE_CLASS_PIN * 100)

/* PIN Info Commands */

#define WFS_INF_PIN_STATUS (PIN_SERVICE_OFFSET + 1)
#define WFS_INF_PIN_CAPABILITIES (PIN_SERVICE_OFFSET + 2)
#define WFS_INF_PIN_KEY_DETAIL (PIN_SERVICE_OFFSET + 4)
#define WFS_INF_PIN_FUNCKEY_DETAIL (PIN_SERVICE_OFFSET + 5)
#define WFS_INF_PIN_HSM_TDATA (PIN_SERVICE_OFFSET + 6)
#define WFS_INF_PIN_KEY_DETAIL_EX (PIN_SERVICE_OFFSET + 7)

/* PIN Command Verbs */

#define WFS_CMD_PIN_CRYPT (PIN_SERVICE_OFFSET + 1)
#define WFS_CMD_PIN_IMPORT_KEY (PIN_SERVICE_OFFSET + 3)
#define WFS_CMD_PIN_GET_PIN (PIN_SERVICE_OFFSET + 5)
#define WFS_CMD_PIN_GET_PINBLOCK (PIN_SERVICE_OFFSET + 7)
#define WFS_CMD_PIN_GET_DATA (PIN_SERVICE_OFFSET + 8)
#define WFS_CMD_PIN_INITIALIZATION (PIN_SERVICE_OFFSET + 9)
#define WFS_CMD_PIN_LOCAL_DES (PIN_SERVICE_OFFSET + 10)
#define WFS_CMD_PIN_LOCAL_EUROCHEQUE (PIN_SERVICE_OFFSET + 11)
#define WFS_CMD_PIN_LOCAL_VISA (PIN_SERVICE_OFFSET + 12)
#define WFS_CMD_PIN_CREATE_OFFSET (PIN_SERVICE_OFFSET + 13)
#define WFS_CMD_PIN_DERIVE_KEY (PIN_SERVICE_OFFSET + 14)
#define WFS_CMD_PIN_PRESENT_IDC (PIN_SERVICE_OFFSET + 15)
#define WFS_CMD_PIN_LOCAL_BANKSYS (PIN_SERVICE_OFFSET + 16)
#define WFS_CMD_PIN_BANKSYS_IO (PIN_SERVICE_OFFSET + 17)
#define WFS_CMD_PIN_RESET (PIN_SERVICE_OFFSET + 18)
#define WFS_CMD_PIN_HSM_SET_TDATA (PIN_SERVICE_OFFSET + 19)
#define WFS_CMD_PIN_SECURE_MSG_SEND (PIN_SERVICE_OFFSET + 20)
#define WFS_CMD_PIN_SECURE_MSG_RECEIVE (PIN_SERVICE_OFFSET + 21)
#define WFS_CMD_PIN_GET_JOURNAL (PIN_SERVICE_OFFSET + 22)
#define WFS_CMD_PIN_IMPORT_KEY_EX (PIN_SERVICE_OFFSET + 23)
#define WFS_CMD_PIN_ENC_IO (PIN_SERVICE_OFFSET + 24)
#define WFS_CMD_PIN_HSM_INIT (PIN_SERVICE_OFFSET + 25)
#define WFS_CMD_PIN_IMPORT_RSA_PUBLIC_KEY (PIN_SERVICE_OFFSET + 26)
#define WFS_CMD_PIN_EXPORT_RSA_ISSUER_SIGNED_ITEM (PIN_SERVICE_OFFSET + 27)
#define WFS_CMD_PIN_IMPORT_RSA_SIGNED_DES_KEY (PIN_SERVICE_OFFSET + 28)
#define WFS_CMD_PIN_GENERATE_RSA_KEY_PAIR (PIN_SERVICE_OFFSET + 29)
#define WFS_CMD_PIN_EXPORT_RSA_EPP_SIGNED_ITEM (PIN_SERVICE_OFFSET + 30)
#define WFS_CMD_PIN_LOAD_CERTIFICATE (PIN_SERVICE_OFFSET + 31)
#define WFS_CMD_PIN_GET_CERTIFICATE (PIN_SERVICE_OFFSET + 32)

CWA 14050-27:2003 (E)

73

#define WFS_CMD_PIN_REPLACE_CERTIFICATE (PIN_SERVICE_OFFSET + 33)
#define WFS_CMD_PIN_START_KEY_EXCHANGE (PIN_SERVICE_OFFSET + 34)
#define WFS_CMD_PIN_IMPORT_RSA_ENCIPHERED_PKCS7_KEY (PIN_SERVICE_OFFSET + 35)
#define WFS_CMD_PIN_EMV_IMPORT_PUBLIC_KEY (PIN_SERVICE_OFFSET + 36)
#define WFS_CMD_PIN_DIGEST (PIN_SERVICE_OFFSET + 37)

/* PIN Messages */

#define WFS_EXEE_PIN_KEY (PIN_SERVICE_OFFSET + 1)
#define WFS_SRVE_PIN_INITIALIZED (PIN_SERVICE_OFFSET + 2)
#define WFS_SRVE_PIN_ILLEGAL_KEY_ACCESS (PIN_SERVICE_OFFSET + 3)
#define WFS_SRVE_PIN_OPT_REQUIRED (PIN_SERVICE_OFFSET + 4)
#define WFS_SRVE_PIN_HSM_TDATA_CHANGED (PIN_SERVICE_OFFSET + 5)
#define WFS_SRVE_PIN_CERTIFICATE_CHANGE (PIN_SERVICE_OFFSET + 6)

/* values of WFSPINSTATUS.fwDevice */

#define WFS_PIN_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_PIN_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_PIN_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_PIN_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_PIN_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_PIN_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_PIN_DEVBUSY WFS_STAT_DEVBUSY

/* values of WFSPINSTATUS.fwEncStat */

#define WFS_PIN_ENCREADY (0)
#define WFS_PIN_ENCNOTREADY (1)
#define WFS_PIN_ENCNOTINITIALIZED (2)
#define WFS_PIN_ENCBUSY (3)
#define WFS_PIN_ENCUNDEFINED (4)
#define WFS_PIN_ENCINITIALIZED (5)

/* values of WFSPINCAPS.wType */

#define WFS_PIN_TYPEEPP (0x0001)
#define WFS_PIN_TYPEEDM (0x0002)
#define WFS_PIN_TYPEHSM (0x0004)

/* values of WFSPINCAPS.fwAlgorithms, WFSPINCRYPT.wAlgorithm */

#define WFS_PIN_CRYPTDESECB (0x0001)
#define WFS_PIN_CRYPTDESCBC (0x0002)
#define WFS_PIN_CRYPTDESCFB (0x0004)
#define WFS_PIN_CRYPTRSA (0x0008)
#define WFS_PIN_CRYPTECMA (0x0010)
#define WFS_PIN_CRYPTDESMAC (0x0020)
#define WFS_PIN_CRYPTTRIDESECB (0x0040)
#define WFS_PIN_CRYPTTRIDESCBC (0x0080)
#define WFS_PIN_CRYPTTRIDESCFB (0x0100)
#define WFS_PIN_CRYPTTRIDESMAC (0x0200)
#define WFS_PIN_CRYPTMAAMAC (0x0400)

/* values of WFSPINCAPS.fwPinFormats */

#define WFS_PIN_FORM3624 (0x0001)
#define WFS_PIN_FORMANSI (0x0002)
#define WFS_PIN_FORMISO0 (0x0004)
#define WFS_PIN_FORMISO1 (0x0008)
#define WFS_PIN_FORMECI2 (0x0010)
#define WFS_PIN_FORMECI3 (0x0020)
#define WFS_PIN_FORMVISA (0x0040)
#define WFS_PIN_FORMDIEBOLD (0x0080)
#define WFS_PIN_FORMDIEBOLDCO (0x0100)
#define WFS_PIN_FORMVISA3 (0x0200)
#define WFS_PIN_FORMBANKSYS (0x0400)
#define WFS_PIN_FORMEMV (0x0800)
#define WFS_PIN_FORMISO3 (0x2000)

/* values of WFSPINCAPS.fwDerivationAlgorithms */

#define WFS_PIN_CHIP_ZKA (0x0001)

CWA 14050-27:2003 (E)

74

/* values of WFSPINCAPS.fwPresentationAlgorithms */

#define WFS_PIN_PRESENT_CLEAR (0x0001)

/* values of WFSPINCAPS.fwDisplay */

#define WFS_PIN_DISPNONE (1)
#define WFS_PIN_DISPLEDTHROUGH (2)
#define WFS_PIN_DISPDISPLAY (3)

/* values of WFSPINCAPS.fwIDKey */

#define WFS_PIN_IDKEYINITIALIZATION (0x0001)
#define WFS_PIN_IDKEYIMPORT (0x0002)

/* values of WFSPINCAPS.fwValidationAlgorithms */

#define WFS_PIN_DES (0x0001)
#define WFS_PIN_EUROCHEQUE (0x0002)
#define WFS_PIN_VISA (0x0004)
#define WFS_PIN_DES_OFFSET (0x0008)
#define WFS_PIN_BANKSYS (0x0010)

/* values of WFSPINCAPS.fwKeyCheckModes and
 WFSPINIMPORTKEYEX.wKeyCheckMode */

#define WFS_PIN_KCVNONE (0x0000)
#define WFS_PIN_KCVSELF (0x0001)
#define WFS_PIN_KCVZERO (0x0002)

/* values of WFSPINKEYDETAIL.fwUse and values of WFSPINKEYDETAILEX.dwUse */

#define WFS_PIN_USECRYPT (0x0001)
#define WFS_PIN_USEFUNCTION (0x0002)
#define WFS_PIN_USEMACING (0x0004)
#define WFS_PIN_USEKEYENCKEY (0x0020)
#define WFS_PIN_USENODUPLICATE (0x0040)
#define WFS_PIN_USESVENCKEY (0x0080)
#define WFS_PIN_USECONSTRUCT (0x0100)
#define WFS_PIN_USEPINLOCAL (0x10000)
#define WFS_PIN_USERSAPUBLIC (0x20000)
#define WFS_PIN_USERSAPRIVATE (0x40000)
#define WFS_PIN_USECHIPINFO (0x100000)
#define WFS_PIN_USECHIPPIN (0x200000)
#define WFS_PIN_USECHIPPS (0x400000)
#define WFS_PIN_USECHIPMAC (0x800000)
#define WFS_PIN_USECHIPLT (0x1000000)
#define WFS_PIN_USECHIPMACLZ (0x2000000)
#define WFS_PIN_USECHIPMACAZ (0x4000000)
#define WFS_PIN_USERSAPUBLICVERIFY (0x8000000)
#define WFS_PIN_USERSAPRIVATESIGN (0x10000000)

/* values of WFSPINFUNCKEYDETAIL.ulFuncMask */

#define WFS_PIN_FK_0 (0x00000001)
#define WFS_PIN_FK_1 (0x00000002)
#define WFS_PIN_FK_2 (0x00000004)
#define WFS_PIN_FK_3 (0x00000008)
#define WFS_PIN_FK_4 (0x00000010)
#define WFS_PIN_FK_5 (0x00000020)
#define WFS_PIN_FK_6 (0x00000040)
#define WFS_PIN_FK_7 (0x00000080)
#define WFS_PIN_FK_8 (0x00000100)
#define WFS_PIN_FK_9 (0x00000200)
#define WFS_PIN_FK_ENTER (0x00000400)
#define WFS_PIN_FK_CANCEL (0x00000800)
#define WFS_PIN_FK_CLEAR (0x00001000)
#define WFS_PIN_FK_BACKSPACE (0x00002000)
#define WFS_PIN_FK_HELP (0x00004000)
#define WFS_PIN_FK_DECPOINT (0x00008000)
#define WFS_PIN_FK_00 (0x00010000)
#define WFS_PIN_FK_000 (0x00020000)

CWA 14050-27:2003 (E)

75

#define WFS_PIN_FK_RES1 (0x00040000)
#define WFS_PIN_FK_RES2 (0x00080000)
#define WFS_PIN_FK_RES3 (0x00100000)
#define WFS_PIN_FK_RES4 (0x00200000)
#define WFS_PIN_FK_RES5 (0x00400000)
#define WFS_PIN_FK_RES6 (0x00800000)
#define WFS_PIN_FK_RES7 (0x01000000)
#define WFS_PIN_FK_RES8 (0x02000000)
#define WFS_PIN_FK_OEM1 (0x04000000)
#define WFS_PIN_FK_OEM2 (0x08000000)
#define WFS_PIN_FK_OEM3 (0x10000000)
#define WFS_PIN_FK_OEM4 (0x20000000)
#define WFS_PIN_FK_OEM5 (0x40000000)
#define WFS_PIN_FK_OEM6 (0x80000000)

/* values of WFSPINFUNCKEY.ulFDK */

#define WFS_PIN_FK_FDK01 (0x00000001)
#define WFS_PIN_FK_FDK02 (0x00000002)
#define WFS_PIN_FK_FDK03 (0x00000004)
#define WFS_PIN_FK_FDK04 (0x00000008)
#define WFS_PIN_FK_FDK05 (0x00000010)
#define WFS_PIN_FK_FDK06 (0x00000020)
#define WFS_PIN_FK_FDK07 (0x00000040)
#define WFS_PIN_FK_FDK08 (0x00000080)
#define WFS_PIN_FK_FDK09 (0x00000100)
#define WFS_PIN_FK_FDK10 (0x00000200)
#define WFS_PIN_FK_FDK11 (0x00000400)
#define WFS_PIN_FK_FDK12 (0x00000800)
#define WFS_PIN_FK_FDK13 (0x00001000)
#define WFS_PIN_FK_FDK14 (0x00002000)
#define WFS_PIN_FK_FDK15 (0x00004000)
#define WFS_PIN_FK_FDK16 (0x00008000)
#define WFS_PIN_FK_FDK17 (0x00010000)
#define WFS_PIN_FK_FDK18 (0x00020000)
#define WFS_PIN_FK_FDK19 (0x00040000)
#define WFS_PIN_FK_FDK20 (0x00080000)
#define WFS_PIN_FK_FDK21 (0x00100000)
#define WFS_PIN_FK_FDK22 (0x00200000)
#define WFS_PIN_FK_FDK23 (0x00400000)
#define WFS_PIN_FK_FDK24 (0x00800000)
#define WFS_PIN_FK_FDK25 (0x01000000)
#define WFS_PIN_FK_FDK26 (0x02000000)
#define WFS_PIN_FK_FDK27 (0x04000000)
#define WFS_PIN_FK_FDK28 (0x08000000)
#define WFS_PIN_FK_FDK29 (0x10000000)
#define WFS_PIN_FK_FDK30 (0x20000000)
#define WFS_PIN_FK_FDK31 (0x40000000)
#define WFS_PIN_FK_FDK32 (0x80000000)

/* values of WFSPINCRYPT.wMode */

#define WFS_PIN_MODEENCRYPT (1)
#define WFS_PIN_MODEDECRYPT (2)
#define WFS_PIN_MODERANDOM (3)

/* values of WFSPINENTRY.wCompletion */

#define WFS_PIN_COMPAUTO (0)
#define WFS_PIN_COMPENTER (1)
#define WFS_PIN_COMPCANCEL (2)
#define WFS_PIN_COMPCONTINUE (6)
#define WFS_PIN_COMPCLEAR (7)
#define WFS_PIN_COMPBACKSPACE (8)
#define WFS_PIN_COMPFDK (9)
#define WFS_PIN_COMPHELP (10)
#define WFS_PIN_COMPFK (11)
#define WFS_PIN_COMPCONTFDK (12)

CWA 14050-27:2003 (E)

76

/* values of WFSPINSECMSG.wProtocol */
#define WFS_PIN_PROTISOAS (1)
#define WFS_PIN_PROTISOLZ (2)
#define WFS_PIN_PROTISOPS (3)
#define WFS_PIN_PROTCHIPZKA (4)
#define WFS_PIN_PROTRAWDATA (5)
#define WFS_PIN_PROTPBM (6)
#define WFS_PIN_PROTHSMLDI (7)

/* values of WFSPINHSMINIT.wInitMode. */
#define WFS_PIN_INITTEMP (1)
#define WFS_PIN_INITDEFINITE (2)
#define WFS_PIN_INITIRREVERSIBLE (3)

/* values of WFSPINENCIO.wProtocol */
#define WFS_PIN_ENC_PROT_CH (0x0001)
#define WFS_PIN_ENC_PROT_GIECB (0x0002)

/* values for WFS_SRVE_PIN_CERTIFICATE_CHANGE */
#define WFS_PIN_CERT_PRIMARY (0x00000001)
#define WFS_PIN_CERT_SECONDARY (0x00000002)
#define WFS_PIN_CERT_NOTREADY (0x00000004)

/* Values for WFSPINCAPS.dwRSAAuthenticationScheme and the fast-track Capabilities
lpszExtra parameter, REMOTE_KEY_SCHEME. */
#define WFS_PIN_RSA_AUTH_2PARTY_SIG (0x00000001)
#define WFS_PIN_RSA_AUTH_3PARTY_CERT (0x00000002)

/* Values for WFSPINCAPS.dwSignatureScheme and the fast-track Capabilities lpzExtra
parameter, SIGNATURE_CAPABILITIES. */
#define WFS_PIN_SIG_GEN_RSA_KEY_PAIR (0x00000001)
#define WFS_PIN_SIG_RANDOM_NUMBER (0x00000002)
#define WFS_PIN_SIG_EXPORT_EPP_ID (0x00000004)

/* values of WFSPINIMPORTRSAPUBLICKEY.dwRSASignatureAlgorithm */
#define WFS_PIN_SIGN_NA (0)
#define WFS_PIN_SIGN_RSASSA_PKCS1_V1_5 (0x00000001)
#define WFS_PIN_SIGN_RSASSA_PSS (0x00000002)

/* values of WFSPINIMPORTRSAPUBLICKEYOUTPUT.dwRSAKeyCheckMode */
#define WFS_PIN_RSA_KCV_NONE (0x00000000)
#define WFS_PIN_RSA_KCV_SHA1 (0x00000001)

/* values of WFSPINEXPORTRSAISSUERSIGNEDITEM.wExportItemType and */
/* WFSPINEXPORTRSAEPPSIGNEDITEM.wExportItemType */
#define WFS_PIN_EXPORT_EPP_ID (0x0001)
#define WFS_PIN_EXPORT_PUBLIC_KEY (0x0002)

/* values of WFSPINIMPORTRSASIGNEDDESKEY.dwRSAEncipherAlgorithm */
#define WFS_PIN_CRYPT_RSAES_PKCS1_V1_5 (0x00000001)
#define WFS_PIN_CRYPT_RSAES_OAEP (0x00000002)

/* values of WFSPINGENERATERSAKEYPAIR.wExponentValue */
#define WFS_PIN_DEFAULT (0)
#define WFS_PIN_EXPONENT_1 (1)
#define WFS_PIN_EXPONENT_4 (2)
#define WFS_PIN_EXPONENT_16 (3)

/* values of WFSPINIMPORTRSASIGNEDDESKEYOUTPUT.wKeyLength and */
/* WFSPINIMPORTRSAENCIPHEREDKEYPKCS7OUT.wKeyLength */
#define WFS_PIN_KEYSINGLE (0x0001)
#define WFS_PIN_KEYDOUBLE (0x0002)

/* values of WFSPINGETCERTIFICATE.wGetCertificate */
#define WFS_PIN_PUBLICKENCKEY (1)
#define WFS_PIN_PUBLICVERIFICATIONKEY (2)

CWA 14050-27:2003 (E)

77

/* values for WFSPINEMVIMPORTPUBLICKEY.wImportScheme */
#define WFS_PIN_EMV_IMPORT_PLAIN_CA (0x0001)
#define WFS_PIN_EMV_IMPORT_CHKSUM_CA (0x0002)
#define WFS_PIN_EMV_IMPORT_EPI_CA (0x0003)
#define WFS_PIN_EMV_IMPORT_ISSUER (0x0004)
#define WFS_PIN_EMV_IMPORT_ICC (0x0005)
#define WFS_PIN_EMV_IMPORT_ICC_PIN (0x0006)
#define WFS_PIN_EMV_IMPORT_PKCSV1_5_CA (0x0007)

/* values for WFSPINDIGEST.wHashAlgorithm */
#define WFS_PIN_HASH_SHA1_DIGEST (0x0001)

/* XFS PIN Errors */

#define WFS_ERR_PIN_KEYNOTFOUND (-(PIN_SERVICE_OFFSET + 0))
#define WFS_ERR_PIN_MODENOTSUPPORTED (-(PIN_SERVICE_OFFSET + 1))
#define WFS_ERR_PIN_ACCESSDENIED (-(PIN_SERVICE_OFFSET + 2))
#define WFS_ERR_PIN_INVALIDID (-(PIN_SERVICE_OFFSET + 3))
#define WFS_ERR_PIN_DUPLICATEKEY (-(PIN_SERVICE_OFFSET + 4))
#define WFS_ERR_PIN_KEYNOVALUE (-(PIN_SERVICE_OFFSET + 6))
#define WFS_ERR_PIN_USEVIOLATION (-(PIN_SERVICE_OFFSET + 7))
#define WFS_ERR_PIN_NOPIN (-(PIN_SERVICE_OFFSET + 8))
#define WFS_ERR_PIN_INVALIDKEYLENGTH (-(PIN_SERVICE_OFFSET + 9))
#define WFS_ERR_PIN_KEYINVALID (-(PIN_SERVICE_OFFSET + 10))
#define WFS_ERR_PIN_KEYNOTSUPPORTED (-(PIN_SERVICE_OFFSET + 11))
#define WFS_ERR_PIN_NOACTIVEKEYS (-(PIN_SERVICE_OFFSET + 12))
#define WFS_ERR_PIN_NOTERMINATEKEYS (-(PIN_SERVICE_OFFSET + 14))
#define WFS_ERR_PIN_MINIMUMLENGTH (-(PIN_SERVICE_OFFSET + 15))
#define WFS_ERR_PIN_PROTOCOLNOTSUPP (-(PIN_SERVICE_OFFSET + 16))
#define WFS_ERR_PIN_INVALIDDATA (-(PIN_SERVICE_OFFSET + 17))
#define WFS_ERR_PIN_NOTALLOWED (-(PIN_SERVICE_OFFSET + 18))
#define WFS_ERR_PIN_NOKEYRAM (-(PIN_SERVICE_OFFSET + 19))
#define WFS_ERR_PIN_NOCHIPTRANSACTIVE (-(PIN_SERVICE_OFFSET + 20))
#define WFS_ERR_PIN_ALGORITHMNOTSUPP (-(PIN_SERVICE_OFFSET + 21))
#define WFS_ERR_PIN_FORMATNOTSUPP (-(PIN_SERVICE_OFFSET + 22))
#define WFS_ERR_PIN_HSMSTATEINVALID (-(PIN_SERVICE_OFFSET + 23))
#define WFS_ERR_PIN_MACINVALID (-(PIN_SERVICE_OFFSET + 24))
#define WFS_ERR_PIN_PROTINVALID (-(PIN_SERVICE_OFFSET + 25))
#define WFS_ERR_PIN_FORMATINVALID (-(PIN_SERVICE_OFFSET + 26))
#define WFS_ERR_PIN_CONTENTINVALID (-(PIN_SERVICE_OFFSET + 27))
#define WFS_ERR_PIN_SIG_NOT_SUPP (-(PIN_SERVICE_OFFSET + 29))
#define WFS_ERR_PIN_INVALID_MOD_LEN (-(PIN_SERVICE_OFFSET + 31))
#define WFS_ERR_PIN_INVALIDCERTSTATE (-(PIN_SERVICE_OFFSET + 32))
#define WFS_ERR_PIN_KEY_GENERATION_ERROR (-(PIN_SERVICE_OFFSET + 33))
#define WFS_ERR_PIN_EMV_VERIFY_FAILED (-(PIN_SERVICE_OFFSET + 34))
#define WFS_ERR_PIN_RANDOMINVALID (-(PIN_SERVICE_OFFSET + 35))
#define WFS_ERR_PIN_SIGNATUREINVALID (-(PIN_SERVICE_OFFSET + 36))
#define WFS_ERR_PIN_SNSCDINVALID (-(PIN_SERVICE_OFFSET + 37))
#define WFS_ERR_PIN_NORSAKEYPAIR (-(PIN_SERVICE_OFFSET + 38))

/*===*/
/* PIN Info Command Structures and variables */
/*===*/

typedef struct _wfs_pin_status
{
 WORD fwDevice;
 WORD fwEncStat;
 LPSTR lpszExtra;
} WFSPINSTATUS, * LPWFSPINSTATUS;

typedef struct _wfs_pin_caps
{
 WORD wClass;
 WORD fwType;
 BOOL bCompound;
 USHORT usKeyNum;
 WORD fwAlgorithms;
 WORD fwPinFormats;
 WORD fwDerivationAlgorithms;
 WORD fwPresentationAlgorithms;
 WORD fwDisplay;

CWA 14050-27:2003 (E)

78

 BOOL bIDConnect;
 WORD fwIDKey;
 WORD fwValidationAlgorithms;
 WORD fwKeyCheckModes;
 LPSTR lpszExtra;
} WFSPINCAPS, * LPWFSPINCAPS;

typedef struct _wfs_pin_key_detail
{
 LPSTR lpsKeyName;
 WORD fwUse;
 BOOL bLoaded;
} WFSPINKEYDETAIL, * LPWFSPINKEYDETAIL;

typedef struct _wfs_pin_fdk
{
 ULONG ulFDK;
 USHORT usXPosition;
 USHORT usYPosition;
} WFSPINFDK, * LPWFSPINFDK;

typedef struct _wfs_pin_func_key_detail
{
 ULONG ulFuncMask;
 USHORT usNumberFDKs;
 LPWFSPINFDK * lppFDKs;
} WFSPINFUNCKEYDETAIL, * LPWFSPINFUNCKEYDETAIL;

typedef struct _wfs_pin_key_detail_ex
{
 LPSTR lpsKeyName;
 DWORD dwUse;
 BYTE bGeneration;
 BYTE bVersion;
 BYTE bActivatingDate[4];
 BYTE bExpiryDate[4];
 BOOL bLoaded;
} WFSPINKEYDETAILEX, * LPWFSPINKEYDETAILEX;

/*===*/
/* PIN Execute Command Structures */
/*===*/

typedef struct _wfs_hex_data
{
 USHORT usLength;
 LPBYTE lpbData;
} WFSXDATA, * LPWFSXDATA;

typedef struct _wfs_pin_crypt
{
 WORD wMode;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 WORD wAlgorithm;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 BYTE bCompression;
 LPWFSXDATA lpxCryptData;
} WFSPINCRYPT, * LPWFSPINCRYPT;

typedef struct _wfs_pin_import
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxValue;
 WORD fwUse;
} WFSPINIMPORT, * LPWFSPINIMPORT;

typedef struct _wfs_pin_derive
{
 WORD wDerivationAlgorithm;

CWA 14050-27:2003 (E)

79

 LPSTR lpsKey;
 LPSTR lpsKeyGenKey;
 LPSTR lpsStartValueKey;
 LPWFSXDATA lpxStartValue;
 BYTE bPadding;
 LPWFSXDATA lpxInputData;
 LPWFSXDATA lpxIdent;
 } WFSPINDERIVE, * LPWFSPINDERIVE;

typedef struct _wfs_pin_getpin
{
 USHORT usMinLen;
 USHORT usMaxLen;
 BOOL bAutoEnd;
 CHAR cEcho;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETPIN, * LPWFSPINGETPIN;

typedef struct _wfs_pin_entry
{
 USHORT usDigits;
 WORD wCompletion;
} WFSPINENTRY, * LPWFSPINENTRY;

typedef struct _wfs_pin_local_des
{
 LPSTR lpsValidationData;
 LPSTR lpsOffset;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 BOOL bNoLeadingZero;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALDES, * LPWFSPINLOCALDES;

typedef struct _wfs_pin_create_offset
{
 LPSTR lpsValidationData;
 BYTE bPadding;
 USHORT usMaxPIN;
 USHORT usValDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINCREATEOFFSET, * LPWFSPINCREATEOFFSET;

typedef struct _wfs_pin_local_eurocheque
{
 LPSTR lpsEurochequeData;
 LPSTR lpsPVV;
 WORD wFirstEncDigits;
 WORD wFirstEncOffset;
 WORD wPVVDigits;
 WORD wPVVOffset;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
 LPSTR lpsDecTable;
} WFSPINLOCALEUROCHEQUE, * LPWFSPINLOCALEUROCHEQUE;

typedef struct _wfs_pin_local_visa
{
 LPSTR lpsPAN;
 LPSTR lpsPVV;
 WORD wPVVDigits;
 LPSTR lpsKey;
 LPWFSXDATA lpxKeyEncKey;
} WFSPINLOCALVISA, * LPWFSPINLOCALVISA;

typedef struct _wfs_pin_presentidc

CWA 14050-27:2003 (E)

80

{
 WORD wPresentAlgorithm;
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
 LPVOID lpAlgorithmData;
} WFSPINPRESENTIDC, * LPWFSPINPRESENTIDC;

typedef struct _wfs_pin_present_result
{
 WORD wChipProtocol;
 ULONG ulChipDataLength;
 LPBYTE lpbChipData;
} WFSPINPRESENTRESULT, * LPWFSPINPRESENTRESULT;

typedef struct _wfs_pin_presentclear
{
 ULONG ulPINPointer;
 USHORT usPINOffset;
} WFSPINPRESENTCLEAR, * LPWFSPINPRESENTCLEAR;

typedef struct _wfs_pin_block
{
 LPSTR lpsCustomerData;
 LPSTR lpsXORData;
 BYTE bPadding;
 WORD wFormat;
 LPSTR lpsKey;
 LPSTR lpsKeyEncKey;
} WFSPINBLOCK, * LPWFSPINBLOCK;

typedef struct _wfs_pin_getdata
{
 USHORT usMaxLen;
 BOOL bAutoEnd;
 ULONG ulActiveFDKs;
 ULONG ulActiveKeys;
 ULONG ulTerminateFDKs;
 ULONG ulTerminateKeys;
} WFSPINGETDATA, * LPWFSPINGETDATA;

typedef struct _wfs_pin_key
{
 WORD wCompletion;
 ULONG ulDigit;
} WFSPINKEY, * LPWFSPINKEY;

typedef struct _wfs_pin_data
{
 USHORT usKeys;
 LPWFSPINKEY *lpPinKeys;
 WORD wCompletion;
} WFSPINDATA, * LPWFSPINDATA;

typedef struct _wfs_pin_init
{
 LPWFSXDATA lpxIdent;
 LPWFSXDATA lpxKey;
} WFSPININIT, * LPWFSPININIT;

typedef struct _wfs_pin_local_banksys
{
 LPWFSXDATA lpxATMVAC;
} WFSPINLOCALBANKSYS, * LPWFSPINLOCALBANKSYS;

typedef struct _wfs_pin_banksys_io
{
 ULONG ulLength;
 LPBYTE lpbData;
} WFSPINBANKSYSIO, * LPWFSPINBANKSYSIO;

CWA 14050-27:2003 (E)

81

typedef struct _wfs_pin_secure_message
 {
 WORD wProtocol;
 ULONG ulLength;
 LPBYTE lpbMsg;
} WFSPINSECMSG, * LPWFSPINSECMSG;

typedef struct _wfs_pin_import_key_ex
{
 LPSTR lpsKey;
 LPSTR lpsEncKey;
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxControlVector;
 DWORD dwUse;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTKEYEX, * LPWFSPINIMPORTKEYEX;

typedef struct _wfs_pin_enc_io
{
 WORD wProtocol;
 ULONG ulDataLength;
 LPVOID lpvData;
} WFSPINENCIO, *LPWFSPINENCIO;

typedef struct _wfs_pin_import_rsa_public_key
{
 LPSTR lpsKey;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSAPUBLICKEY, * LPWFSPINIMPORTRSAPUBLICKEY;

typedef struct _wfs_pin_import_rsa_public_key_output
{
 DWORD dwRSAKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSAPUBLICKEYOUTPUT, * LPWFSPINIMPORTRSAPUBLICKEYOUTPUT;

typedef struct _wfs_pin_export_rsa_issuer_signed_item
{
 WORD wExportItemType;
 LPSTR lpsName;
} WFSPINEXPORTRSAISSUERSIGNEDITEM, * LPWFSPINEXPORTRSAISSUERSIGNEDITEM;

typedef struct _wfs_pin_export_rsa_issuer_signed_item_output
{
 LPWFSXDATA lpxValue;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT, * LPWFSPINEXPORTRSAISSUERSIGNEDITEMOUTPUT;

typedef struct _wfs_pin_import_rsa_signed_des_key
{
 LPSTR lpsKey;
 LPSTR lpsDecryptKey;
 DWORD dwRSAEncipherAlgorithm;
 LPWFSXDATA lpxValue;
 DWORD dwUse;
 LPSTR lpsSigKey;
 DWORD dwRSASignatureAlgorithm;
 LPWFSXDATA lpxSignature;
} WFSPINIMPORTRSASIGNEDDESKEY, * LPWFSPINIMPORTRSASIGNEDDESKEY;

typedef struct _wfs_pin_import_rsa_signed_des_key_output
{

WORD wKeyLength;
 WORD wKeyCheckMode;
 LPWFSXDATA lpxKeyCheckValue;
} WFSPINIMPORTRSASIGNEDDESKEYOUTPUT, * LPWFSPINIMPORTRSASIGNEDDESKEYOUTPUT;

typedef struct _wfs_pin_generate_rsa_key

CWA 14050-27:2003 (E)

82

{
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wModulusLength;
 WORD wExponentValue;
} WFSPINGENERATERSAKEYPAIR, * LPWFSPINGENERATERSAKEYPAIR;

typedef struct _wfs_pin_export_rsa_epp_signed_item
{
 WORD wExportItemType;
 LPSTR lpsName;
 LPSTR lpsSigKey;
 DWORD dwSignatureAlgorithm;
} WFSPINEXPORTRSAEPPSIGNEDITEM, * LPWFSPINEXPORTRSAEPPSIGNEDITEM;

typedef struct _wfs_pin_export_rsa_epp_signed_item_output
{
 LPWFSXDATA lpxValue;
 LPWFSXDATA lpxSelfSignature;
 LPWFSXDATA lpxSignature;
} WFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT, * LPWFSPINEXPORTRSAEPPSIGNEDITEMOUTPUT;

typedef struct _wfs_pin_load_certificate
{
 LPWFSXDATA lpxLoadCertificate;
} WFSPINLOADCERTIFICATE, *LPWFSPINLOADCERTIFICATE;

typedef struct _wfs_pin_load_certificate_output
{
 LPWFSXDATA lpxCertificateData;
} WFSPINLOADCERTIFICATEOUTPUT, *LPWFSPINLOADCERTIFICATEOUTPUT;

typedef struct _wfs_pin_get_certificate
{
 WORD wGetCertificate;
} WFSPINGETCERTIFICATE, *LPWFSPINGETCERTIFICATE;

typedef struct _wfs_pin_get_certificate_output
{
 LPWFSXDATA lpxCertificate;
} WFSPINGETCERTIFICATEOUTPUT, *LPWFSPINGETCERTIFICATEOUTPUT;

typedef struct wfs_pin_replace_certificate
{
 LPWFSXDATA lpxReplaceCertificate;
} WFSPINREPLACECERTIFICATE, *LPWFSPINREPLACECERTIFICATE;

typedef struct _wfs_pin_replace_certificate_output
{
 LPWFSXDATA lpxNewCertificateData;
} WFSPINREPLACECERTFICATEOUTPUT, *LPWFSPINREPLCACECERTFICATEOUTPUT;

typedef struct _wfs_pin_start_key_exchange
{

 LPWFSXDATA lpxRandomItem ;
} WFSPINSTARTKEYEXCHANGE, *LPWFSPINSTARTKEYEXCHANGE;

typedef struct _wfs_pin_import_rsa_enciphered_pkcs7_key
{
 LPWFSXDATA lpxImportRSAKeyIn;
 LPSTR lpsKey;
 DWORD dwUse;
} WFSPINIMPORTRSAENCIPHEREDPKCS7KEY, * LPWFSPINIMPORTRSAENCIPHEREDPKCS7KEY;

CWA 14050-27:2003 (E)

83

typedef struct _wfs_pin_import_rsa_enciphered_key_pkcs7_output
{
 WORD wKeyLength ;
 LPWFSXDATA lpxRSAData;
}WFSPINIMPORTRSAENCIPHEREDKEYPKCS7OUT, *LPWFSPINIMPORTRSAENCIPHEREDKEYPKCS7OUT;

typedef struct _wfs_pin_emv_import_public_key
{
 LPSTR lpsKey;
 DWORD dwUse;
 WORD wImportScheme;
 LPWFSXDATA lpxImportData;
 LPSTR lpsSigKey;
} WFSPINEMVIMPORTPUBLICKEY, * LPWFSPINEMVIMPORTPUBLICKEY;

typedef struct _wfs_pin_emv_import_public_key_output
{
 LPSTR lpsExpiryDate;
} WFSPINEMVIMPORTPUBLICKEYOUTPUT, * LPWFSPINEMVIMPORTPUBLICKEYOUTPUT;

typedef struct _wfs_pin_digest
{
 WORD wHashAlgorithm;
 LPWFSXDATA lpxDigestInput;
} WFSPINDIGEST, * LPWFSPINDIGEST;

typedef struct _wfs_pin_digest_output
{
 LPWFSXDATA lpxDigestOutput;
} WFSPINDIGESTOUTPUT, * LPWFSPINDIGESTOUTPUT;

typedef struct _wfs_pin_hsm_init
{
 WORD wInitMode;
 LPWFSXDATA lpxOnlineTime;
} WFSPINHSMINIT, * LPWFSPINHSMINIT;

/*===*/
/* PIN Message Structures */
/*===*/

typedef struct _wfs_pin_access
{
 LPSTR lpsKeyName;
 LONG lErrorCode;
} WFSPINACCESS, * LPWFSPINACCESS;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSPIN__H */

